Philosophy of physics

What are good theories of the world?

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Contents

  1. Theories of matter
    1. Ancient atomism
    2. Modern atomism
    3. Contemporary views of matter
  2. Classical physics
    1. Mechanics
    2. Electrodynamics
    3. Special relativity
  3. Statistical physics
    1. Introduction
    2. History
    3. Thermodynamics
    4. Canonical ensemble
    5. Phase translations
  4. Symmetry-first physics
    1. Curie’s principle
    2. Relativity
    3. Noether’s theorems
    4. Gauge principle
    5. Wigner-Stone theorems
  5. Quantum mechanics
    1. Introduction
    2. History
    3. Hydrogen atom
    4. Foundations of QM
    5. Secondary properties of QM
    6. Decoherence
    7. Quantum chemistry
    8. Quantum computing
  6. Quantum field theory
    1. Fields
    2. Symmetry
    3. Spin
    4. Scattering
    5. Path intergrals
    6. Renormalization
    7. Effective field theory
    8. Foundations of QFT
  7. Exotics in quantum field theory
    1. Higher gauge theory
    2. Non-perturbative features
    3. Supersymmetry
  8. Interpretations of quantum mechanics
    1. Measurement problem
    2. Copenhagen “interpretation”
    3. Von Neumann’s no hidden variables “proof”
    4. EPR paradox
    5. Von Neumann-Wigner interpretation
    6. Bell’s theorem
    7. Bohmian mechanics
    8. Everettian interpretation
    9. Collapse interpretations
    10. Epistemic interpretations
    11. PBR theorem
    12. Other interpretations
    13. Bad takes
  9. The standard model of particle physics
    1. History of particle physics
    2. Mixing
    3. Higgs mechanism
    4. A model of leptons
    5. Quantum chromodynamics
    6. Three generations of fermions
    7. Experimental methods
  10. Beyond the standard model
    1. Neutrino masses
    2. Ad hoc structures
    3. Experimental anomalies
    4. Grand unification
    5. Baryogenesis
    6. Future colliders and criticisms
    7. Quantum gravity
  11. Gravity and cosmology
    1. General relativity
    2. Newtonian gravity
    3. Big bang model
    4. Spacetime
    5. Blackholes
    6. Gravitational waves
    7. Dark matter
    8. Inflation
    9. Alternative theories of gravity
  12. Fine-tuning
  13. Complexity and emergence
  14. Bracketing human experience
  15. My thoughts
  16. Annotated bibliography
    1. Einstein, A., Podolsky, B. & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete?
    2. Anderson, P. (1972). More is different.
    3. Redhead, M. (1988). A philosopher looks at quantum field theory.
    4. Joos, E., Zeh, H.D., Kiefer, C., Kupsch, J., Stamatescu, I.O. (2003). Decoherence and the Appearance of a Classical World in Quantum Theory.
    5. Pusey, M.F., Barrett, J., & Rudolph, T. (2012). On the reality of the quantum state.
    6. More articles to do
  17. Links and encyclopedia articles
    1. SEP
    2. IEP
    3. Scholarpedia
    4. Wikipedia
    5. Others
    6. Videos
  18. References

Theories of matter

Ancient atomism

Discussion:

Modern atomism

Discussion:

Contemporary views of matter

See also:

Classical physics

Mechanics

History:

Lagrangian mechanics:

Pedagogy:

Dimensional analysis:

See also:

Electrodynamics

History:

Heaviside:

What is Maxwell’s theory? or, What should we agree to understand by Maxwell’s theory?

The first approximation to the answer is to say, There is Maxwell’s book as he wrote it; there is his text, and there are his equations: together they make his theory. But when we come to examine it closely, we find that this answer is unsatisfactory. To begin with, it is sufficient to refer to papers by physicists, written say during the twelve years following the first publication of Maxwell’s treatise, to see that there may be much difference of opinion as to what his theory is. It may be, and has been, differently interpreted by different men, which is a sign that it is not set forth in a perfectly clear and unmistakeable form. There are many obscurities and some inconsistencies. Speaking for myself, it was only by changing its form of presentation that I was able to see it clearly, and so as to avoid the inconsistencies. Now there is no finality in a growing science. It is, therefore, impossible to adhere strictly to Maxwell’s theory as he gave it to the world, if only on account of its inconvenient form. But it is clearly not admissible to make arbitrary changes in it and still call it his. He might have repudiated them utterly. But if we have good reason to believe that the theory as stated in his treatise does require modification to make it self-consistent, and to believe that he would have admitted the necessity of the change when pointed out to him, then I think the resulting modified theory may well be called Maxwell’s.16

Pedagogy:

Special relativity

History:

Stein:

And this is the crucial difference, as I see it, between Poincaré’s relation to the special theory of relativity and Einstein’s. Both of them discovered this theory—and did so independently. So far as its mathematical structure is concerned, Poincaré’s grasp of the theory was in some important respects superior to Einstein’s. But Einstein “took the theory seriously” in the sense that he looked to it for NEW INFORMATION about the physical world—that is, in Poincaré’s language, he regarded it as “fertile”: as a source of new “real generalizations”—of empirically testable consequences. And in doing so, Einstein attributed physical significance to the basic notions of the theory itself in a way that Poincaré did not.19

Pedagogy:

See also:

Statistical physics

Introduction

TODO:

History

Thermodynamics

Canonical ensemble

Phase translations

See also:

Symmetry-first physics

Curie’s principle

See also:

Relativity

See also:

Noether’s theorems

Gauge principle

Weyl:

It seems to me that this new principle of gauge invariance, which follows not from speculation but from experiment, compellingly indicates that the electromagnetic field is a necessary accompanying phenomenon, not of gravitation, but of the material wave field represented by \(\psi\). Since gauge invariance includes an arbitrary function \(\lambda\) it has the character of “general” relativity and can naturally only be understood in that context.43

Wigner-Stone theorems

Ovrut’s version of Wigner’s theorem:

The generators of the representation of a transformation in the Hilbert space are the operators representing the classical Noether’s charges that are conserved under that transformation.45

Discussion:

See also:

Quantum mechanics

Introduction

Feynman and Hibbs on wave-principle duality:

What is remarkable is that this dual use of wave and particle ideas does not lead to contradictions. This is so only if great care is taken as to what kind of statements one is permitted to make about the experimental situation.52

Feynman and Hibbs on the uncertainty principle:

Any determination of the alternative taken by a process capable of following more than one alternative destroys the interference between the alternatives.53

History

Figure 1: 1927 Solvay Conference on Quantum Mechanics (source: Wikimedia).

Hydrogen atom

Foundations of QM

Hilbert spaces

States being represented as vectors in a Hilbert space implies the superposition principle:

\[ |\psi\rangle = \sum_{n} a_{n} \: |n\rangle \]

the definition of a complex inner product:

\[ \langle\psi_1|\psi_2\rangle = \int dx \: \langle\psi_1|x\rangle \, \langle{}x|\psi_2\rangle \]

and a norm:

\[ \langle\psi|\psi\rangle \geq 0 \]

Operators

Observables are represented as self-adjoint operators with the “eigenvector-eigenvalue link.”

\[ \hat{H} \: |n\rangle = E_{n} \: |n\rangle \]

Wigner’s theorem

The generators of the representation of a transformation in a Hilbert space are the operators representing the classical Noether charges that are conserved under that transformation.

\[ \hat{U}(x^{\mu}) = \exp( -i \, x^\mu \, \hat{P}_\mu ) \]

\[ \hat{U}(\theta^{\mu\nu}) = \exp( \frac{-i}{2} \, \theta^{\mu\nu} \, \hat{M}_{\mu\nu} ) \]

Born rule

\[ P(n) = | \langle n | \psi \rangle |^{2} = |a_{n}|^{2} \]

TODO: Note that Everettian QM would argue the Born rule is secondary and derivable.

See also:

Secondary properties of QM

\[ \langle x | n \rangle = \psi_{n}(x) \]

\[ i \hbar \: \partial_{t} \: |\psi\rangle = \hat{H} \: |\psi\rangle \]

\[ i \hbar \: \partial_{t} \: \hat{U}(t) \: |\psi\rangle = \hat{H} \: \hat{U}(t) \: |\psi\rangle \]

Schrödinger vs Heisenberg pictures is like Heraclitus vs Parmenides.

\[ \mathcal{H} = \mathcal{H}_\mathrm{S} \otimes \mathcal{H}_\mathrm{E} \]

\[ |\psi\rangle \otimes |\alpha\rangle \rightarrow |\psi; \alpha\rangle \otimes |\alpha\rangle \]

See Dutailly,63 for example, for a demonstration that the Schrödinger equation is derivable from Wigner’s theorem.

Decoherence

See also:

Quantum chemistry

Quantum computing

Quantum field theory

Fields

Introduction

Baez, Segal, & Zhou:

Quantum field theory is quintessentially the algebra and analysis of infinite-dimensional dynamical systems, as constrained by quantum phenomenology, causality, and symmetry. Although it has a clear-cut central goal, that of the realistic description of particle production and annihilation in terms of the localized interactions of fields in space-time, it is clear from this description that it is a multifaceted subject.88

Pedagogy

Symmetry

Introduction

See also:

Coleman-Mandula theorem

See also:

Wigner’s classification

CPT theorem

Spin

Introduction

Spinors

Michael Atiyah:

No one fully understands spinors. Their algebra is formally understood but their general significance is mysterious. In some sense they describe the “square root” of geometry and, just as understanding the square root of -1 took centuries, the same might be true of spinors.107

Spin-statistics theorem

Scattering

Path intergrals

Renormalization

Effective field theory

J.D. Fraser:

in demonstrating that these large scale properties of a QFT model are insensitive to what is going on at very high energies, the renormalization group is also telling us that these features are largely independent of the details of unknown physics at currently inaccessible energy scales. We thus have reason to be confident that these features of current QFTs will be retained through future theory change, in one way or another, whatever physics beyond the standard model has in store for us.143

Foundations of QFT

Introduction

Baez:

Nobody has found a fully rigorous formulation of QED, nor has anyone proved such a thing cannot be found.146

Baez:

In practice, quantum field theory is marvelously good for calculating answers to many physics questions. The answers involve approximations. These approximations seem to work very well: that is, the answers match experiments. Unfortunately we do not fully understand, in a mathematically rigorous way, what these approximations are supposed to be approximating.147

Wave-particle duality

Weinberg on wave-particle duality:

In its mature form, the idea of quantum field theory is that quantum fields are the basic ingredients of the universe, and particles are just bundles of energy and momentum of the fields. In a relativistic theory the wave function is a functional of these fields, not a function of particle coordinates. Quantum field theory hence led to a more unified view of nature than the old dualistic interpretation in terms of both fields and particles.150

Baez, Segal, & Zhou on wave-particle duality:

The treatment of the dynamics of quantum systems turns out to be naturally undertaken in terms of field rather than particle concepts, by virtue of the local character of relativistic interactions. In mathematical terms, the field is diagonalizcd in the functional integration representation, just as the particle numbers are diagonalized in the tensor product representation.152

Haag’s theorem

Quantization

Algebraic vs constructive QFT

Kastler:

Rudolf [Haag] is not satisfied by a notion of local observables relying plainly on space and time. Instead he wishes to base the theory on concepts related to individual processes. This attitude seems to me to move towards a basic “algebra of procedures,” pointing towards a theory of (non-commutative) space-time. I know that, coming from a very different angle, Alain Connes also believes the ultimate algebra of basic physics to be a discrete algebra of elements standing for experimental procedures—following the idea that the spatial notions man acquires in his cradle are less basic than his procedures at [particle] accelerators.174

Exotics in quantum field theory

Higher gauge theory

Aharonov-Bohm effect

Wikipedia discussion in the magnetic moment article:

A gauge theory like electromagnetism is defined by a gauge field, which associates a group element to each path in space time. For infinitesimal paths, the group element is close to the identity, while for longer paths the group element is the successive product of the infinitesimal group elements along the way.

In electrodynamics, the group is \(U(1)\), unit complex numbers under multiplication. For infinitesimal paths, the group element is \(1 + i\,A_\mu\,dx^\mu\) which implies that for finite paths parametrized by \(s\), the group element is:

\(\prod _{s}\left(1+i\,e\,A_\mu\,\frac{dx^\mu}{ds}\,ds\right) = \exp\left(i\,e\int A\cdot dx\right) \,.\)

The map from paths to group elements is called the Wilson loop or the holonomy, and for a \(U(1)\) gauge group it is the phase factor which the wavefunction of a charged particle acquires as it traverses the path. For a loop:

\(e\oint_{\partial D}A\cdot dx = e\int_{D}(\nabla \times A)\,dS = e\int_{D}B\,dS \,.\)

So that the phase a charged particle gets when going in a loop is the magnetic flux through the loop. When a small solenoid has a magnetic flux, there are interference fringes for charged particles which go around the solenoid, or around different sides of the solenoid, which reveal its presence.

Fiber bundles

Bundles are the global structure of physical fields and they are irrelevant only for the crude local and perturbative description of reality.181

Maudlin on fiber bundles:

If we adopt the metaphysics of the fiber bundle to represent chromodynamics, then we must reject the notion that quark color is a universal, or that there are color tropes which can be duplicates, or that quarks are parts of ‘natural sets’ which include all and only the quarks of the same color, for there is no fact about whether any two quarks are the same color or different. Further, we must reject the notion that there is any metaphysically pure relation of comparison between quarks at different points, since the only comparisons available are necessarily dependent on the existence of a continuous path in space-time connecting the points. So it seems that there are no color properties and no metaphysically pure internal relations between quarks.184

But if one asks whether, in this picture, the electromagnetic field is a substance or an instance of a universal or a trope, or some combination of these, none of the options seems very useful. If the electromagnetic field is a connection on a fiber bundle, then one understands what it is by studying fiber bundles directly, not by trying to translate modern mathematics into archaic philosophical terminology.185

See also:

Topological QFT

See also:

Non-perturbative features

Supersymmetry

Urs Schreiber:

not just that local spacetime supersymmetry is one possibility to have sensible particle content under Wigner classification, but that the class of (algebraic) super-groups precisely exhausts the moduli space of possible consistent local spacetime symmetry groups.205

See also:

Interpretations of quantum mechanics

The withdrawal of philosophy into a “professional” shell of its own has had disastrous consequences. The younger generation of physicists, the Feynmans, the Schwingers, etc., may be very bright; they may be more intelligent than their predecessors, than Bohr, Einstein, Schrödinger, Boltzmann, Mach and so on. But they are uncivilized savages, they lack in philosophical depth—and this is the fault of the very same idea of professionalism which you are now defending.

– from a letter in Appendix B of Feyerabend’s Against Method

Measurement problem

Copenhagen “interpretation”

Figure 2: Interpretations of quantum mechanics (philosophy-in-figures.tumblr.com).

Criticisms:

Von Neumann’s no hidden variables “proof”

EPR paradox

Von Neumann-Wigner interpretation

Criticisms:

Bell’s theorem

Bohmian mechanics

Discussion:

Attempts at QFT:

Attempts at empirical proposals:

Primitive ontology:

Virtues:

Criticisms:

Everettian interpretation

A theory containing many ad hoc constants and restrictions, or many independent hypotheses, in no way impresses us as much as one which is largely free of arbitrariness.268

It is therefore improper to attribute any less validity or “reality” to any element of a superposition than any other element, due to this ever present possibility of obtaining interference effects between the elements. All elements of a superposition must be regarded as simultaneously existing.278

A way out of this dilemma [the measurement problem] within quantum mechanical concepts requires one of two possibilities: a modification of the Schrödinger equation that explicitly describes a collapse (also called “spontaneous localization”), or an Everett type interpretation, in which all measurement outcomes are assumed to exist in one formal superposition, but to be perceived separately as a consequence of their dynamical autonomy resulting from decoherence. While this latter suggestion has been called “extravagant” (as it requires myriads of co-existing quasi-classical “worlds”), it is similar in principle to the conventional (though nontrivial) assumption, made tacitly in all classical descriptions of observation, that consciousness is localized in certain semi-stable and sufficiently complex subsystems (such as human brains or parts thereof) of a much larger external world. Occam’s razor, often applied to the “other worlds,” is a dangerous instrument: philosophers of the past used it to deny the existence of the interior of stars or of the back side of the moon, for example. So it appears worth mentioning at this point that environmental decoherence, derived by tracing out unobserved variables from a universal wave function, readily describes precisely the apparently observed “quantum jumps” or “collapse events” (as will be discussed in great detail in various parts of this book).280

Videos:

Virtues:

Criticisms:

See also:

Collapse interpretations

Virtues:

Criticisms:

Epistemic interpretations

Criticisms:

PBR theorem

Videos:

Other interpretations

From Sabine Hossenfelder, some examples for models that violate measurement independence are here:

Bad takes

Press release for The Nobel Prize in Physics 2022:

This means that quantum mechanics cannot be replaced by a theory that uses hidden variables.

which is wrong! The violation of Bell’s inequality means that QM cannot be explained by fully local hidden variables. Bohmian mechanics exists as a counter example that hidden variables can explain QM, but require a non-local guiding equation.

The standard model of particle physics

History of particle physics

Mixing

Higgs mechanism

In 1964, three groups: Robert Brout and Francois Englert;332 Peter Higgs;333 and Gerald Guralnik, Carl R. Hagen, and Tom Kibble,334 independently demonstrated an exception to Goldstone’s theorem, showing that Goldstone bosons do not occur when a spontaneously broken symmetry is local. Instead, the Goldstone mode provides the third polarization of a massive vector field, resulting in massive gauge bosons. The other mode of the original scalar doublet remains as a massive spin-zero particle, the Higgs boson. This is the Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism, or Higgs mechanism. In the Standard Model, the Higgs boson also couples to the fermions, generating their bare masses.

On July 4 of 2012, the ATLAS337 and CMS338 experiments both announced discovering a new particle consistent with the long-sought-after Higgs boson, a key to explaining electroweak symmetry breaking in the Standard Model of particle physics.

A model of leptons

Quantum chromodynamics

Three generations of fermions

Figure 3: The fields in the standard model of particle physics (source: Symmetry Magazine).
Figure 4: The total action of the physics of the standard model together with general relativity as presented by Sean Carroll on his blog. In this all encompassing equation, fermions are the quanta of the \psi fields and bosons are the quanta of the g, A, and \Phi fields.

More:

Experimental methods

Beyond the standard model

Neutrino masses

Ad hoc structures

See also:

Experimental anomalies

Grand unification

Figure 5: Two-loop renormalization group evolution of the inverse gauge couplings, \alpha^{-1}, in the Standard Model (dashed lines) and the MSSM (solid lines). In the MSSM case, the sparticle masses are treated as a common threshold varied between 750 GeV (blue) and 2.5 TeV (red).
Figure 6: Ryan’s sketch of how a grand unified theory may come together. Noted in green are parts of the theory that are well verified experimentally. Noted in red are parts yet unseen. This was a slide from my thesis defense, partially to help motivate why I would look for a Z^{\prime} particle (source: Ryan’s thesis defense (2013).).

See also:

Baryogenesis

Future colliders and criticisms

Quantum gravity

Gravity and cosmology

General relativity

\[ R_{\mu\nu} - \frac{1}{2} R \: g_{\mu\nu} + \Lambda \: g_{\mu\nu} = \frac{8 \pi G}{c^4} \: T_{\mu\nu} \label{eq:einstein_field_equations} \]

Newtonian gravity

Big bang model

Spacetime

Blackholes

Gravitational waves

Dark matter

Inflation

Guth:

The peculiar properties of the false vacuum stem from its pressure, which is large and negative… Mechanically such a negative pressure corresponds to a suction, which does not sound like something that would drive the Universe into a period of rapid expansion. The mechanical effects of pressure, however, depend on pressure differences, so they are unimportant if the pressure is reasonably uniform. According to general relativity, however, there is a gravitational effect that is very important under these circumstances. Pressures, like energy densities, create gravitational fields, and in particular a positive pressure creates an attractive gravitational field. The negative pressure of the false vacuum, therefore, creates a repulsive gravitational field, which is the driving force behind inflation.401

Figure 7: How the \Lambda-CDM concordance model of cosmology was developed.

Alternative theories of gravity

Fine-tuning

Complexity and emergence

Anderson:

The ability to reduce everything to simple fundamental laws does not imply the ability to start from those laws and reconstruct the universe. The constructionist hypothesis breaks down when confronted with the twin difficulties of scale and complexity. At each level of complexity entirely new properties appear. Psychology is not applied biology, nor is biology applied chemistry. We can now see that the whole becomes not merely more, but very different from the sum of its parts.408

See also:

Bracketing human experience

Figure 8: Sean Carroll on the entailment of everyday life by physics.

Videos of talks:

See also:

My thoughts

Annotated bibliography

Einstein, A., Podolsky, B. & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete?

  • Einstein et al. (1935)

My thoughts

  • TODO.

Anderson, P. (1972). More is different.

  • Anderson (1972)

My thoughts

  • TODO.

Redhead, M. (1988). A philosopher looks at quantum field theory.

  • Redhead (1988)

My thoughts

  • TODO.

Joos, E., Zeh, H.D., Kiefer, C., Kupsch, J., Stamatescu, I.O. (2003). Decoherence and the Appearance of a Classical World in Quantum Theory.

  • Joos, E. et al. (2003).

My thoughts

  • TODO.

Pusey, M.F., Barrett, J., & Rudolph, T. (2012). On the reality of the quantum state.

My thoughts

  • TODO.

SEP

IEP

Scholarpedia

Wikipedia

Others

Videos

References

Adlam, E., Hance, J. R., Hossenfelder, S., & Palmer, T. N. (2023). Taxonomy for physics beyond quantum mechanics. https://arxiv.org/abs/2309.12293
Afriat, A. (2013). Weyl’s gauge argument. Foundations of Physics, 43, 699–705. http://philsci-archive.pitt.edu/9597/
Aharonov, Y. & Bohm, D. (1959). Significance of electromagnetic potentials in the quantum theory. Physical Review, 115, 485–491. https://journals.aps.org/pr/abstract/10.1103/PhysRev.115.485
Ahmed, A. & Caulton, A. (2014). Causal decision theory and EPR correlations. Synthese, 191, 4315–4352. http://philsci-archive.pitt.edu/10992/
Aimè, C. (2022). Muon collider physics summary. https://arxiv.org/abs/2203.07256
Albrecht, A. & Steinhardt, P. J. (1982). Cosmology for Grand Unified Theories with radiatively induced symmetry breaking. Physics Review Letters, 48, 1220–1223. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.48.1220
Allori, V. (2022). What is it like to be a relativistic GRW theory? Or: Quantum mechanics and relativity, still in conflict after all these years. Foundations of Physics, 52, 79. https://doi.org/10.1007/s10701-022-00595-5
Allori, V., Dürr, D., Goldstein, S., & Zanghì, N. (2002). Seven steps towards the classical world. Journal of Optics B: Quantum and Semiclassical Optics, 4, 482. https://arxiv.org/abs/quant-ph/0112005
Ananthaswamy, A. (2021). This simple experiment could challenge standard quantum theory. Scientific American. https://www.scientificamerican.com/article/this-simple-experiment-could-challenge-standard-quantum-theory/
Anderson, P. W. (1972). More is different. Science, 177, 393–396. http://science.sciencemag.org/content/177/4047/393
Anzivino, C., Vaibhav, V., & Zaccone, A. (2024). Random close packing of binary hard spheres predicts the stability of atomic nuclei. https://arxiv.org/abs/2405.11268
Arbey, A. & Mahmoudi, F. (2021). Dark matter and the early Universe: a review. https://arxiv.org/abs/2104.11488
Arkani-Hamed, N., Cachazo, F., & Kaplan, J. (2008). What is the simplest quantum field theory? https://arxiv.org/abs/0808.1446
Arntzenius, F. (2012). Space, Time, and Stuff. Oxford University Press.
Arute, F. et al. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574, 505–510. https://www.nature.com/articles/s41586-019-1666-5
ATLAS Collaboration. (2012). Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Physics Letters B, 716, 1–29. https://arxiv.org/abs/1207.7214
Auyang, S. Y. (1995). How Is Quantum Field Theory Possible? Oxford University Press.
Bacciagaluppi, G. & Valentini, A. (2009). Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. Cambridge University Press. https://arxiv.org/abs/quant-ph/0609184
Baez, J. C. (2011). Division algebras and quantum theory. Foundations of Physics, 42, 819–855. https://arxiv.org/abs/1101.5690
———. (2016). Struggles with the continuum. https://arxiv.org/abs/1609.01421
———. (2018). Getting to the bottom of Noether’s theorem. Talk given at The Philosophy and Physics of Noether’s Theorems, University of Notre Dame, October 6, 2018. https://math.ucr.edu/home/baez/noether/noether_web.pdf
———. (2020). The tenfold way. https://arxiv.org/abs/2011.14234
Baez, J. C. & Huerta, J. (2009a). Division algebras and supersymmetry I. https://arxiv.org/abs/0909.0551
———. (2009b). The algebra of grand unified theories. Bulletin of the American Mathematical Society, 47, 483–552. https://arxiv.org/abs/0904.1556
———. (2010). Division algebras and supersymmetry II. https://arxiv.org/abs/1003.3436
———. (2011). An invitation to higher gauge theory. General Relativity and Gravitation, 43, 2335–92. https://arxiv.org/abs/1003.4485
Baez, J. C. & Muniain, J. P. (1994). Gauge Fields, Knots and Gravity. World Scientific.
Baez, J. C. & Schreiber, U. (2005). Higher gauge theory. https://arxiv.org/abs/math/0511710
Baez, J. C., Segal, I., & Zhou, Z. (1992). Introduction to Algebraic and Constructive Quantum Field Theory. Princeton University Press. https://math.ucr.edu/home/baez/bsz.html
Baez, J. C. & Stay, M. (2009). Physics, topology, logic, and computation: A Rosetta Stone. https://arxiv.org/abs/0903.0340
Baggott, J. (2013). Farewell to Reality: How modern physics has betrayed the search for scientific truth. Pegasus Books.
Bahcall, N. A. (2015). Dark matter universe. Proceedings of the National Academy of Sciences, 112, 12243–5. https://www.pnas.org/doi/10.1073/pnas.1516944112
Bahcall, N. A., Ostriker, J. P., Perlmutter, S., & Steinhardt, P. J. (1999). The cosmic triangle: Revealing the state of the universe. Science, 284, 1481–8. https://arxiv.org/abs/astro-ph/9906463
Bain, J. (2000). Against particle/field duality: Asymptotic particle states and interpolating fields in interacting QFT, or Who’s afraid of Haag’s theorem? Erkenntnis, 53, 375–406. https://link.springer.com/content/pdf/10.1023/A:1026482100470.pdf
———. (2013a). Effective field theories. In R. Batterman (Ed.), The Oxford Handbook of Philosophy of Physics (pp. 224–254). Oxford University Press.
———. (2013b). Emergence in effective field theories. European Journal for Philosophy of Science, 3, 257–273.
Baker, D. J. (2009). Against field interpretations of quantum field theory. British Journal for the Philosophy of Science, 60, 585–609. http://philsci-archive.pitt.edu/4350/
Barad, K. (2007). Meeting the Universe Halfway: Quantum Physics and the Entanglement of Matter and Meaning. Duke University Press.
Barbado, L. C. & Del Santo, F. (2023). On playing gods: The fallacy of the many-worlds interpretation. https://arxiv.org/abs/2311.03467
Bargmann, V. & Wigner, E. P. (1948). Group theoretical discussion of relativistic wave equations. Proceedings of the National Academy of Sciences, 34, 211–223.
Barrett, J. A. (2011). Everett’s pure wave mechanics and the notion of worlds. European Journal for Philosophy of Science, 1, 277–302. https://link.springer.com/article/10.1007/s13194-011-0023-9
———. (2016). Quantum Worlds. Principia: An International Journal of Epistemology, 20, 45–60.
Bassi, A. (2005). Collapse models: analysis of the free particle dynamics. Journal of Physics A: Mathematical and General, 38, 3173. https://arxiv.org/abs/quant-ph/0410222
Batterman, R. W. (2003). Falling cats, parallel parking and polarized light. Studies in History and Philosophy of Modern Physics, 34, 527–557. http://philsci-archive.pitt.edu/794/
Baumann, D. (2009). TASI lectures on inflation. https://arxiv.org/abs/0907.5424
Becker, A. (2018). What is Real? The unfinished quest for the meaning of quantum physics. Basic Books.
Bedau, M. A. (1997). Weak emergence. Philosophical Perspectives, 11, 375–399.
Bell, J. S. (1955). Time reversal in field theory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 231, 479–495.
———. (1964). On the Einstein Podolsky Rosen paradox. Physics, 1, 195–200. https://journals.aps.org/ppf/pdf/10.1103/PhysicsPhysiqueFizika.1.195
———. (1966). On the problem of hidden variables in quantum mechanics. Reviews of Modern Physics, 38, 447. http://fy.chalmers.se/~delsing/QI/Bell-RMP-66.pdf
———. (1984). Beables for quantum field theory. CERN-TH.4035/84. https://cds.cern.ch/record/190753/files/198411046.pdf
———. (2004a). Are there quantum jumps? In Speakable and Unspeakable in Quantum Mechanics (2nd ed., pp. 201–212). Cambridge University Press. (Originally published in 1987).
———. (2004b). Speakable and Unspeakable in Quantum Mechanics (2nd ed.). Cambridge University Press. (Originally published in 1987).
Bertolini, M. (2022). Lectures on supersymmetry. https://www.sissa.it/tpp/phdsection/OnlineResources/6/susycourse.pdf
Bohm, D. (1952). A suggested interpretation of the quantum theory in terms of ’hidden’ variables, I and II. Physical Review, 85, 166–193.
———. (1953). Proof that probability density approaches \(|\psi|^2\) in causal interpretation of quantum theory. Physical Review, 89, 458–466.
Bohm, D. & Aharonov, Y. (1957). Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky. Physical Review, 108, 1070.
Bokulich, P. (2011). Hempel’s dilemma and domains of physics. Analysis, 71, 646–651.
Bong, K.W. et al. (2020). A strong no-go theorem on the Wigner’s friend paradox. Nature Physics, 16, 1199–1205. https://arxiv.org/abs/1907.05607
Borcherds, R. E. & Barnard, A. (2002). Lectures on quantum field theory. https://arxiv.org/abs/math-ph/0204014
Born, M. (1953). The interpretation of quantum mechanics. The British Journal for the Philosophy of Science, 4, 95–106. https://www.jstor.org/stable/685986
Boughn, S. (2018). Making sense of the many worlds interpretation. https://arxiv.org/abs/1801.08587
Brading, K. A. (2002). Which symmetry? Noether, Weyl, and conservation of electric charge. Studies in History and Philosophy of Modern Physics, 33, 3–22. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.569.106&rep=rep1&type=pdf
Brans, C. H. (1988). Bell’s theorem does not eliminate fully causal hidden variables. International Journal of Theoretical Physics, 27, 219–226. https://link.springer.com/article/10.1007/BF00670750
Broughton, M. et al. (2020). TensorFlow Quantum: A software framework for quantum machine learning. https://arxiv.org/abs/2003.02989
Bub, J. (2019). ’Two Dogmas’ redux. https://arxiv.org/abs/1907.06240
Buchholz, D. (1998). Current trends in axiomatic quantum field theory. https://arxiv.org/abs/hep-th/9811233
Buckingham, E. (1914). On physically similar systems; Illustrations of the use of dimensional equations. Physical Review, 4, 345–376.
Bunge, M. (1955a). Strife about complementarity (I). The British Journal for the Philosophy of Science, 6, 1–12. https://www.jstor.org/stable/685570
———. (1955b). Strife about complementarity (II). The British Journal for the Philosophy of Science, 6, 141–154. https://www.jstor.org/stable/685522
———. (2001). Philosophy in Crisis: The Need for Reconstruction. Prometheus Books.
Butterfield, J. (2014). Reduction, emergence, and renormalization. The Journal of Philosophy, 111, 5–49. https://arxiv.org/abs/1406.4354v1
Butterfield, J. & Bouatta, N. (2015). Renormalization for philosophers. Metaphysics in Contemporary Physics, 104, 437–485. https://arxiv.org/abs/1406.4532
Cabibbo, N. (1963). Unitary symmetry and leptonic decays. Physical Review Letters, 10, 531–533. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.10.531
Candelas, P., Horowitz, G. T., Strominger, A., & Witten, E. (1985). Vacuum configurations for superstrings. Nuclear Physics B, 258, 46–74.
Cao, C., Hu, H., Li, J., & Schwarz, W. H. E. (2019). Physical origin of chemical periodicities in the system of elements. Pure and Applied Chemistry, 91, 1969–1999. https://www.degruyter.com/document/doi/10.1515/pac-2019-0901/html
Cao, T. Y. (1999). Conceptual Foundations of Quantum Field Theory. Cambridge University Press.
———. (2003). Structural realism and the interpretation of quantum field theory. Synthese, 136, 3–24. https://www.jstor.org/stable/20117384
———. (2016). The Englert-Brout-Higgs mechanism: An unfinished project. International Journal of Modern Physics A, 31, 1630061.
Capdevilla, R., Curtin, D., Kahn, Y., & Krnjaic, G. (2021). A no-lose theorem for discovering the new physics of \((g-2)_\mu\) at muon colliders. https://arxiv.org/abs/2101.10334
Carcassi, G., Calderon, F., & Aidala, C. A. (2023). The unphysicality of Hilbert spaces. https://arxiv.org/abs/2308.06669
Carroll, S. M. (2004). Spacetime and Geometry. Addison Wesley.
———. (2019). Something Deeply Hidden. Dutton.
Carroll, S. M. & Singh, A. (2019). Mad-Dog Everettianism: Quantum mechanics at its most minimal. In What is Fundamental? (pp. 95–104). Springer. https://arxiv.org/abs/1801.08132
Caulton, A. (2014). Physical entanglement in permutation-invariant quantum mechanics. https://arxiv.org/abs/1409.0246
———. (2015). The role of symmetry in the interpretation of physical theories. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 52, 153–162. http://philsci-archive.pitt.edu/11571/
———. (2018). A persistent particle ontology for quantum field theory. Metascience, 27, 439–441. https://link.springer.com/article/10.1007/s11016-018-0323-1
Caulton, A. & Butterfield, J. (2012). Symmetries and paraparticles as a motivation for structuralism. British Journal for the Philosophy of Science, 63, 233–285. https://arxiv.org/abs/1002.3730
Caves, C. M., Fuchs, C. A., & Schack, R. (2001). Quantum probabilities as Bayesian probabilities. Physical Review A, 65, 022305. https://arxiv.org/abs/quant-ph/0106133
CDF Collaboration. (2022). High-precision measurement of the \(W\) boson mass with the CDF II detector. Science, 376, 170–176. https://www.science.org/doi/10.1126/science.abk1781
Chalmers, M. (2017). Model physicist. https://cerncourier.com/a/model-physicist/
Chester, D., Marrani, A., & Rios, M. (2023). Beyond the Standard Model with six-dimensional spinors. Particles, 6, 144-172. https://arxiv.org/abs/2002.02391
Ciepielewski, G. (2020). On superdeterministic rejections of settings independence. https://arxiv.org/abs/2008.00631
Clauser, J., Horne, M., Shimony, A., & Holt, R. (1969). Proposed experiment to test local hidden-variable theories. Physical Review Letters, 23, 880–884.
Clowe, D. et al. (2006). A direct empirical proof of the existence of dark matter. Astrophysical Journal Letters, 648, 109. https://arxiv.org/abs/astro-ph/0608407
CMS Collaboration. (2012). Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Physics Letters B, 716, 30–61. https://arxiv.org/abs/1207.7235
Coecke, B. & Kissinger, A. (2017). Picturing Quantum Processes: A first course in quantum theory and diagrammatic reasoning. Cambridge University Press.
Cohen, M. L. (2015). Explaining and predicting the properties of materials using quantum theory. MRS Bulletin, 40, 516–525. https://www.cambridge.org/core/journals/mrs-bulletin/article/explaining-and-predicting-the-properties-of-materials-using-quantum-theory/0BAF1A2783D41470AAE666F6B916ECE5
Coleman, S. & Mandula, J. (1967). All possible symmetries of the \(S\) matrix. Physical Review, 159, 1251–1256.
Connes, A. (1985). Non-commutative differential geometry. Publications Mathématiques de L’Institut Des Hautes Scientifiques, 62, 41–144. https://link.springer.com/article/10.1007/BF02698807
Conway, J. & Kochen, S. (2006). The free will theorem. Foundations of Physics, 36, 1441–1473. https://arxiv.org/abs/quant-ph/0604079
Cramer, J. G. (1986). The transactional interpretation of quantum mechanics. Reviews of Modern Physics, 58, 647.
d’Espagnat, B. (1979). The quantum theory and reality. Scientific American, 241, 158–181. https://static.scientificamerican.com/sciam/assets/media/pdf/197911_0158.pdf
Das, S. & Dürr, D. (2019). Arrival time distributions of spin-1/2 particles. Scientific Reports, 9, 2242. https://www.nature.com/articles/s41598-018-38261-4
de Queiroz, A., Lachieze-Rey, M., & Simon, S. (2014). Symmetry, physical theories and theory change. Frontiers of Fundamental Physics, 14, 210. https://ui.adsabs.harvard.edu/abs/2014ffp..confE.210D/abstract
Debono, I. & Smoot, G. F. (2016). General relativity and cosmology: Unsolved questions and future directions. Universe, 2, 23. https://arxiv.org/abs/1609.09781
Degorre, J., Laplante, S., & Roland, J. (2005). Simulating quantum correlations as a distributed sampling problem. https://arxiv.org/abs/quant-ph/0507120
Del Santo, F. & Krizek, G. K. (2023). Against the "nightmare of a mechanically determined universe": Why Bohm was never a Bohmian. https://arxiv.org/abs/2307.05611
Del Santo, F. & Schwarzhans, E. (2022). "Philosophysics" at the University of Vienna: The (Pre-)history of foundations of quantum physics in the Viennese cultural context. Physics in Perspective, 24, 125–153. https://link.springer.com/article/10.1007/s00016-022-00290-y
Deligne, P. (1999). Notes on spinors. In Quantum Fields and Strings: A Course for Mathematicians, Vol. 1 (pp. 99–136). American Mathematical Society. https://publications.ias.edu/sites/default/files/79_NotesOnSpinors.pdf
———. (2002). Catégorie Tensorielle,. Moscow Mathematical Journal, 2, 227–248. https://www.math.ias.edu/files/deligne/Tensorielles.pdf
Deutsch, D. (1985). Quantum theory as a universal physical theory. International Journal of Theoretical Physics, 24, 1–41.
Dewar, N. (2019). Sophistication about symmetries. British Journal for the Philosophy of Science, 70, 485–521.
DeWitt, B. S. (1970). Quantum mechanics and reality. Physics Today, 23, 30–35. https://physicstoday.scitation.org/doi/10.1063/1.3022331
DeWitt, B. S. & Graham, N. (1973). The Many-Worlds Interpretation of Quantum Mechanics. Princeton University Press.
Dimopoulos, S. & Georgi, H. (1981). Softly broken supersymmetry and SU(5). Nuclear Physics B, 193, 150–162.
Dine, M. & Kusenko, A. (2004). The origin of the matter-antimatter asymmetry. Reviews of Modern Physics, 76, 1–30. https://arxiv.org/abs/hep-ph/0303065
Dirac, P. A. M. (1963). The evolution of the physicist’s picture of nature. Scientific American, 208, 45–53. https://www.jstor.org/stable/24936146
Donadi, S. & Hossenfelder, S. (2022). A toy model for local and deterministic wave-function collapse. Physical Review A, 106, 022212. https://arxiv.org/abs/2010.01327
Drossel, B. (2015). On the relation between the second law of thermodynamics and classical and quantum mechanics. In B. Falkenburg & M. Morrison (Eds.), Why More is Different: Philosophical issues in condensed matter physics and complex systems (pp. 41–54). Springer.
Duff, M. J., Okun, L. B., & Veneziano, G. (2001). Trialogue on the number of fundamental constants. https://arxiv.org/abs/physics/0110060
Duncan, A. (2012). Conceptual Framework of Quantum Field Theory. Oxford University Press.
Dutailly, J. C. (2014). Particles and Fields. https://hal.archives-ouvertes.fr/hal-00933043
Dürr, D. et al. (2014). Can Bohmian mechanics be made relativistic? Proceedings of the Royal Society A, 470, 20130699. https://royalsocietypublishing.org/doi/full/10.1098/rspa.2013.0699
Dürr, D., Goldstein, S., Tumulka, R., & Zanghì, N. (2004). Bohmian mechanics and quantum field theory. Physical Review Letters, 93, 090402. https://arxiv.org/abs/quant-ph/0303156
———. (2005). Bell-type quantum field theories. Journal of Physics A, 38, R1. https://arxiv.org/abs/quant-ph/0407116
Dürr, D., Goldstein, S., & Zanghì, N. (1995). Bohmian mechanics as the foundation of quantum mechanics. https://arxiv.org/abs/quant-ph/9511016
———. (2013). Quantum Physics Without Quantum Philosophy. Springer.
Dürr, D. & Lazarovici, D. (2020). Understanding Quantum Mechanics: The World According to Modern Quantum Foundations. Springer.
Dyson, F. J. (1949). The \(S\) matrix in quantum electrodynamics. Physical Review, 75, 1736.
———. (1952). Divergence of perturbation theory in quantum electrodynamics. Physical Review, 85, 631.
Earman, J. & Fraser, D. (2006). Haag’s theorem and its implications for the foundations of quantum field theory. Erkenntnis, 64, 305–344.
Einstein, A. (1905a). Ist die trägheit eines körpers von seinem energieinhalt abhängig? Annalen Der Physik, 323, 639–641. https://onlinelibrary.wiley.com/doi/10.1002/andp.19053231314
———. (1905b). Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Annalen Der Physik, 322, 549–560. https://onlinelibrary.wiley.com/doi/10.1002/andp.19053220806
———. (1905c). Über einen die erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt. Annalen Der Physik, 322, 132–148. https://onlinelibrary.wiley.com/doi/10.1002/andp.19053220607
———. (1905d). Zur elektrodynamik bewegter körper. Annalen Der Physik, 322, 891–921. https://onlinelibrary.wiley.com/doi/10.1002/andp.19053221004
Einstein, A. & Grossmann, M. (1913). Entwurf einer verallgemeinerten relativitätstheorie und einer theorie der gravitation (Outline of a generalized theory of relativity and of a theory of gravitation). Zeitschrift für Mathematik Und Physik, 62, 225–261. http://www.icra.it/MG/doc/Einstein_Entwurf_1913.pdf
Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47, 777–780. https://journals.aps.org/pr/abstract/10.1103/PhysRev.47.777
Englert, F. & Brout, R. (1964). Broken symmetry and the mass of gauge vector mesons. Physical Review Letters, 13, 321–323. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.13.321
Esfeld, M., Lazarovici, D., Lam, V., & Hubert, M. (2017). The physics and metaphysics of primitive stuff. The British Journal for the Philosophy of Science, 68, 133–161.
Everett, H. (1956). Theory of the Universal Wave Function. Princeton University. (Ph.D. thesis. Reprinted in Barrett & Byrne (2012).).
———. (1957). "Relative state" formulation of quantum mechanics. Reviews Modern Physics, 29, 454–462.
———. (2012). The Everett Interpretation of Quantum Mechanics: Collected Works 1955-1980 with Commentary. (J. A. Barrett & P. Byrne, Eds.). Princeton University Press.
Feynman, R. P. (1963). The Feynman Lectures on Physics, Volume I. California Institute of Technology. http://www.feynmanlectures.caltech.edu/I_03.html
———. (1965). The development of the space-time view of quantum electrodynamics. Nobel Lecture, December 11, 1965. https://www.nobelprize.org/prizes/physics/1965/feynman/lecture/
Feynman, R. P. & Hibbs, A. R. (1965). Quantum Mechanics and Path Integrals. Dover. Emended edition (2005).
Frankel, T. (2004). The Geometry of Physics (2nd ed.). Cambridge University Press.
Fraser, D. (2008). The fate of ’particles’ in quantum field theories with interactions. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 39, 841–859. http://philsci-archive.pitt.edu/4038/
———. (2011). How to take particle physics seriously: A further defence of axiomatic quantum field theory. Studies in History and Philosophy of Modern Physics, 42, 126–135.
Fraser, J. D. (2018). Renormalization and the formulation of scientific realism. Philosophy of Science, 85, 1164–1175. https://philsci-archive.pitt.edu/14049/1/rgrealism_preprint.pdf
———. (2021). The twin origins of renormalization group concepts. Studies in History and Philosophy of Science Part A, 89, 114–128. https://durham-repository.worktribe.com/preview/1218769/34961.pdf
Frauchiger, D. & Renner, R. (2018). Quantum theory cannot consistently describe the use of itself. Nature Communications.
Freed, D. S. & Moore, G. W. (2012). Twisted equivariant matter. https://arxiv.org/abs/1208.5055
Freedman, D. Z., Nieuwenhuizen, P. van, & Ferrara, S. (1976). Progress toward a theory of supergravity. Physical Review D, 13, 3214–3218.
Frè, P. G. (2013). Gravity, a Geometrical Course, Volume 2: Black Holes, Cosmology and Introduction to Supergravity. Springer.
Friedrich, B. (2016). How did the tree of knowledge get its blossom? The rise of physical and theoretical chemistry, with an eye on Berlin and Leipzig. Angewandte, 55, 5378–5392. https://onlinelibrary.wiley.com/doi/10.1002/anie.201509260
Fuchs, C. A. (2002). Quantum mechanics as quantum information (and only a little more). https://arxiv.org/abs/quant-ph/0205039
———. (2010). QBism, the perimeter of quantum Bayesianism. https://arxiv.org/abs/1003.5209
Fuchs, C. A., Mermin, N. D., & Schack, R. (2014). An introduction to QBism with an application to the locality of quantum mechanics. American Journal of Physics, 82, 749–754. https://arxiv.org/abs/1311.5253
Fuchs, C. A. & Schack, R. (2013). Quantum-Bayesian coherence: The no-nonsense version. Reviews of Modern Physics, 85, 1693–1715. https://arxiv.org/abs/1301.3274
Fuchs, C. A. & Stacey, B. C. (2016). QBism: Quantum theory as a hero’s handbook. https://arxiv.org/abs/1612.07308
Geiko, R. & Moore, G. W. (2020). Dyson’s classification and real division superalgebras. https://arxiv.org/abs/2010.01675
Gell-Mann, M. (1988). Simplicity and complexity in the description of nature. Engineering and Science, 51, 2–9. https://calteches.library.caltech.edu/53/2/Mann.pdf
Gell-Mann, M. & Hartle, J. B. (1989). Quantum mechanics in the light of quantum cosmology. In Proceedings of the Santa Fe Institute Workshop on Complexity, Entropy, and the Physics of Information. Addison-Wesley. https://arxiv.org/abs/1803.04605
Georgi, H. (1999). Lie Algebras in Particle Physics (2nd ed.). Westview Press. (Originally published in 1982).
Georgi, H. & Glashow, S. L. (1974). Unity of all elementary-particle forces. Physical Review Letters, 32, 438–441. http://pcbat1.mi.infn.it/~battist/astrop/su5.pdf
Georgi, H., Quinn, H. R., & Weinberg, S. (1974). Hierarchy of interactions in unified gauge theories. Physical Review Letters, 33, 451.
Ghirardi, G. C., Pearle, P., & Rimini, A. (1990). Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Physical Review A, 42, 78–89.
Ghirardi, G. C., Rimini, A., & Weber, T. and. (1986). Unified dynamics for microscopic and macroscopic systems. Physical Review D, 34, 470–491.
Gisin, N. (1991). Bell’s inequality holds for all non-product states. Physics Letters A, 154, 201–202.
———. (1999). Bell inequality for arbitrary many settings of the analyzers. Physics Letters A, 260, 1–3. https://arxiv.org/abs/quant-ph/9905062
Gisin, N. & Del Santo, F. (2023). Towards a measurement theory in QFT: "Impossible" quantum measurements are possible but not ideal. https://arxiv.org/abs/2311.13644
Gisin, N. & Peres, A. (1992). Maximal violation of Bell’s inequality for arbitrarily large spin. Physics Letters A, 162, 15–17.
Glashow, S. (1961). Partial symmetries of weak interactions. Nuclear Physics, 22, 579–588.
Glick, D. (2016). The ontology of quantum field theory: Structural realism vindicated? Studies in History and Philosophy of Science Part A, 59, 78–86. https://philarchive.org/archive/GLITOO
Goldenfeld, N. (1992). Lectures on Phase Transitions and the Renormalization Group. Perseus Books.
Gopakumar, R. (2011). What is the simplest gauge-string duality? https://arxiv.org/abs/1104.2386
Gopakumar, R. & Mazenc, E. A. (2022). Deriving the simplest gauge-string duality, I: Open-closed-open triality. https://arxiv.org/abs/2212.05999
Goyal, P. (2020). Derivation of classical mechanics in an energetic framework via conservation and relativity. Foundations of Physics, 50, 1426–1479.
Greaves, H. & Thomas, T. (2012). The CPT theorem. https://arxiv.org/abs/1204.4674
Greaves, H. & Wallace, D. (2011). Empirical consequences of symmetries. https://arxiv.org/abs/1111.4309
Greenberger, D., Horne, M., Shimony, A., & Zeilinger, A. (1990). Bell’s theorem without inequalities. American Journal of Physics, 58, 1131.
Gross, D. J. (1996). The role of symmetry in fundamental physics. Proceedings of the National Academy of Sciences, 93, 14256–14259. https://www.pnas.org/doi/pdf/10.1073/pnas.93.25.14256
Guralnik, G. S., Hagen, C. R., & Kibble, T. W. B. (1964). Global conservation laws and massless particles. Physical Review Letters, 13, 585–587. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.13.585
Guth, A. H. (1981). Inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D, 23, 347–356. https://journals.aps.org/prd/abstract/10.1103/PhysRevD.23.347
———. (1997). Was cosmic inflation the ’bang’ of the big bang? The Beamline, 27, 14. https://ned.ipac.caltech.edu/level5/Guth/Guth_contents.html
———. (2007). Eternal inflation and its implications. Journal of Physics A, 40, 6811. https://arxiv.org/abs/hep-th/0702178
Haag, R. (1955). On quantum field theories. Matematisk-Fysiske Meddelelser, 29, 1–37. http://cds.cern.ch/record/212242
———. (1992). Local Quantum Physics: Fields, Particles, Algebras. Springer.
Haag, R., Łopuszański, J. T., & Sohnius, M. (1975). All possible generators of supersymmetries of the S-matrix. Nuclear Physics B, 88, 257–274.
Hall, M. J. W. (2010). Local deterministic model of singlet state correlations based on relaxing measurement independence. Physical Review Letters, 105, 250404. https://arxiv.org/abs/1007.5518
Halvorson, H. (2019). To be a realist about quantum theory. In O. Lombardi (Ed.), Quantum Worlds: Perspectives on the Ontology of Quantum Mechanics. https://philpapers.org/archive/HALSPO-6.pdf
Hamamatsu. (2007). Photomultiplier Tubes: Basics and Applications (3rd ed.). Hamamatsu Photonics. https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/etd/PMT_handbook_v3aE.pdf
Harrigan, N. & Spekkens, R. W. (2010). Einstein, incompleteness, and the epistemic view of quantum states. Foundations of Physics, 40, 125–157. https://arxiv.org/abs/0706.2661
Healey, R. (2007). Gauging What’s Real. Oxford University Press.
Heaviside, O. (1893). Electromagnetic Theory, Vol. 1. London: The Electrician.
Higgs, P. W. (1964). Broken symmetries, massless particles and gauge fields. Physics Letters, 13, 508–509. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.13.508
Holm, D. D. (2011a). Geometric Mechanics - Part I: Dynamics And Symmetry (2nd ed.). Imperial College Press.
———. (2011b). Geometric Mechanics - Part II: Rotating, Translating, and Rolling (2nd ed.). Imperial College Press.
Hossenfelder, S. (2023). Quantum confusions, cleared up (or so I hope). https://arxiv.org/abs/2309.12299
Hossenfelder, S. & Palmer, T. (2020). Rethinking superdeterminism. Frontiers in Physics, 8, 139. https://www.frontiersin.org/articles/10.3389/fphy.2020.00139/full
Huggett, N. & Weingard, R. (1995). The renormalisation group and effective field theories. Synthese, 102, 171–194.
Ismael, J. & Schaffer, J. (2020). Quantum holism: Nonseparability as common ground. Synthese, 197, 4131–4160. https://link.springer.com/article/10.1007/s11229-016-1201-2
Jaeger, G. (2019). Are virtual particles less real? Entropy, 21, 141. https://www.mdpi.com/1099-4300/21/2/141
Janyska, J., Modugno, M., & Vitolo, R. (2007). Semi-vector spaces and units of measurement. https://arxiv.org/abs/0710.1313
Joos, E. et al. (2003). Decoherence and the Appearance of a Classical World in Quantum Theory (2nd ed.). Springer. (Originally published in 1996).
Joos, E. & Zeh, H. D. (1985). The emergence of classical properties through interaction with the environment. Zeitschrift für Physik B Condensed Matter, 59, 223–243. http://www.decoherence.de/J+Z.pdf
Jordan, P., Neumann, J. von, & Wigner, E. P. (1934). On an algebraic generalization of the quantum mechanical formalism. Annals of Mathematics, 35, 29.
Kadanoff, L. P. (2013). Theories of matter: Infinities and renormalization. In R. Batterman (Ed.), The Oxford Handbook of Philosophy of Physics (pp. 109–141). Oxford University Press. https://arxiv.org/abs/1002.2985
Kasprzak, W., Lysik, B., & Rybaczuk, M. (1990). Dimensional Analysis in the Identification of Mathematical Models. World Scientific.
Kastler, D. (2003). Rudolf Haag—Eighty Years. Communications in Mathematical Physics, 237, 3–6.
Keller, K. J., Papadopoulos, M. A., & Reyes-Lega, A. F. (2007). On the realization of symmetries in quantum mechanics. https://arxiv.org/abs/0712.0997
Kelvin, L. (1901). Nineteenth century clouds over the dynamical theory of heat and light. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2, 1–40. https://www.equipes.lps.u-psud.fr/Montambaux/histoire-physique/Kelvin-1900.pdf
Klaczynski, L. (2016). Haag’s theorem in renormalised quantum field theories. https://arxiv.org/abs/1602.00662
Kochen, S. & Specker, E. P. (1967). The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics, 17, 59–87.
Kontsevich, M. & Segal, G. (2021). Wick rotation and the positivity of energy in quantum field theory. https://arxiv.org/abs/2105.10161
Lazarovici, D. (2018). Against fields. European Journal for Philosophy of Science, 8, 145–170. https://arxiv.org/abs/1809.00855
Lehmann, H., Symanzik, K., & Zimmermann, W. (1955). Zur formulierung quantisierter feldtheorien. Nuovo Cimento, 1, 205–225.
Leifer, M. S. & Spekkens, R. W. (2013). Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference. Physical Review A, 88, 052130. https://arxiv.org/abs/1107.5849
Lepine, D. (2016). Deligne’s theorem on tensor categories. https://alistairsavage.ca/pubs/Lepine-Deligne_Theorem.pdf
Linde, A. D. (1982). A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Physics Letters B, 108, 389–393. https://www.sciencedirect.com/science/article/pii/0370269382912199
———. (1983). Chaotic inflation. Physics Letters B, 129, 177–181.
Lisi, A. G. (2007). An exceptionally simple theory of everything. https://arxiv.org/abs/0711.0770
———. (2017). Emergence. https://www.edge.org/response-detail/27149
LSND Collaboration. (1996). Evidence for neutrino oscillations from muon decay at rest. Physical Review C, 54, 2685–2708. https://arxiv.org/abs/nucl-ex/9605001
———. (2001). Evidence for neutrino oscillations from the observation of electron anti-neutrinos in a muon anti-neutrino beam. Physical Review D, 64, 112007. https://arxiv.org/abs/hep-ex/0104049
Lucretius. (1995). On the Nature of Things: De Rerum Natura. (A. M. Esolen, Trans.). Johns Hopkins University Press. (Originally written in the first century BCE).
Lyre, H. (2008). Does the Higgs mechanism exist? International Studies in the Philosophy of Science, 22, 119–133. https://arxiv.org/abs/0806.1359
Malament, D. B. (1996). In defence of dogma: Why there cannot be a relativistic quantum mechanics of (localizable) particles. In R. Clifton (Ed.), Perspectives on Quantum Reality (pp. 1–10). Springer.
Maldacena, J. M. (1998). The large \(N\) limit of superconformal field theories and supergravity. Advances in Theoretical and Mathematical Physics, 2, 231–252. https://arxiv.org/abs/hep-th/9711200
Martens, N. (2022). Dark matter realism. Foundations of Physics, 52, 1–19. https://link.springer.com/article/10.1007/s10701-021-00524-y
Martin, J. (2012). Everything you always wanted to know about the cosmological constant problem (but were afraid to ask). https://arxiv.org/abs/1205.3365
Martin, S. P. (2011). Phenomenology of particle physics. https://www.ippp.dur.ac.uk/~mspannow/files/Phenomenology_Particle_Physics_Martin.pdf
———. (2016). A supersymmetry primer. (First published in 1997). https://arxiv.org/abs/hep-ph/9709356
Martin, S. P. & Wells, J. (2023). Elementary Particles and Their Interactions. Springer. https://link.springer.com/book/10.1007/978-3-031-14368-7
Martin-Dussaud, P., Rovelli, C., & Zalamea, F. (2018). The notion of locality in relational quantum mechanics. https://arxiv.org/abs/1806.08150
Maudlin, T. (1995). Three measurement problems. Topoi, 14, 7–15.
———. (1996). Quantum Nonlocality and Relativity: Metaphysical Intimations of Modern Physics. Wiley-Blackwell.
———. (2007). The Metaphysics Within Physics. Oxford University Press.
———. (2012). Philosophy of Physics: Space and Time. Princeton University Press.
———. (2014). What Bell did. Journal of Physics A: Mathematical and Theoretical, 47, 424010. https://iopscience.iop.org/article/10.1088/1751-8113/47/42/424010/pdf
———. (2018). Ontological clarity via canonical presentation: Electromagnetism and the Aharonov-Bohm effect. Entropy, 20, 465. https://www.mdpi.com/1099-4300/20/6/465
———. (2019). Philosophy of Physics: Quantum Theory. Princeton University Press.
Mermin, N. D. (1985). Is the moon there when nobody looks? Reality and the quantum theory. Physics Today, 38, 38–47.
———. (1990). Quantum mysteries revisited. American Journal of Physics, 58, 731–734.
———. (2022). A note on the quantum measurement problem. https://arxiv.org/abs/2206.10741
MicroBooNE Collaboration. (2021). Search for neutrino-induced neutral current \(\Delta\) radiative decay in MicroBooNE and a first test of the MiniBooNE low energy excess under a single-photon hypothesis. https://arxiv.org/abs/2110.00409
MiniBooNE Collaboration. (2018). Significant excess of electron-like events in the MiniBooNE short-baseline neutrino experiment. Physical Review Letters, 121, 221801. https://arxiv.org/abs/1805.12028
Misner, C. W., Thorne, K. S., & Wheeler, J. A. (1973). Gravitation. Freeman and Co. (Reprinted by Princeton University Press (2017)).
Murayama, H. (2000). Supersymmetry phenomenology. https://arxiv.org/abs/hep-ph/0002232
Myrvold, W. C. (2015). What is a wavefunction? Synthese, 192, 3247–3274. http://philsci-archive.pitt.edu/11117/
Nail, T. (2018). Lucretius I: An Ontology of Motion. Edinburgh University Press.
Ney, A. (2021). From quantum entanglement to spatiotemporal distance. In Christian Wüthrich Baptiste Le Bihan & N. Huggett (Eds.), Philosophy Beyond Spacetime. Oxford University Press.
Ney, A. & Albert, D. Z. (2013). The Wave Function: Essays on the metaphysics of quantum mechanics. Oxford University Press.
Nguyen, T. (2016). The perturbative approach to path integrals: A succinct mathematical treatment. Journal of Mathematical Physics, 57, 092301. https://arxiv.org/abs/1505.04809
Nigg, D. et al. (2015). Can different quantum state vectors correspond to the same physical state? An experimental test. New Journal of Physics, 18, 013007. https://arxiv.org/abs/1211.0942
Nikolić, H. (2007). Quantum mechanics: Myths and facts. Foundations of Physics, 37, 1563–1611. https://link.springer.com/content/pdf/10.1007/s10701-007-9176-y.pdf
———. (2022). Relativistic QFT from a Bohmian perspective: A proof of concept. Foundations of Physics, 52, 80. https://doi.org/10.1007/s10701-022-00600-x
nLab authors. (2021). Fiber bundles in physics. http://ncatlab.org/nlab/show/fiber%20bundles%20in%20physics
Noether, E. (1918). Invariante variationsprobleme. Nachrichten von Der Gesellschaft Der Wissenschaften Zu Göttingen, Mathematisch-Physikalische Klasse, 235.
Norton, J. D. (1993). General covariance and the foundations of general relativity: Eight decades of dispute. Reports on Progress in Physics, 56, 791–858. https://web.archive.org/web/20171124074404/http://www.pitt.edu/~jdnorton/papers/decades.pdf
O’Raifeartaigh, L. (1997). The Dawning of Gauge Theory. Princeton University Press.
Ohanian, H. C. (1986). What is spin? American Journal of Physics, 54, 500.
Ostrik, V. (2004). Tensor categories (after Deligne). https://arxiv.org/abs/math/0401347
Palmer, T. N. (1995). A local deterministic model of quantum spin measurement. Proceedings of the Royal Society of London A, 451, 585–608. https://arxiv.org/abs/quant-ph/9505025
———. (2009). The invariant set postulate: A new geometric framework for the foundations of quantum theory and the role played by gravity. https://arxiv.org/abs/0812.1148
———. (2016). Invariant set theory. https://arxiv.org/abs/1605.01051
Pati, J. C. & Salam, A. (1974). Lepton number as the fourth color. Physical Review D, 10, 275–289. https://pdfs.semanticscholar.org/21fb/f9d49acf3e3f07098ca686ae4058c38dbd03.pdf
Patterson, G. (2007). Jean Perrin and the triumph of the atomic doctrine. Endeavour, 31, 50–53.
Pauli, W. (1941). Relativistic field theories of elementary particles. Reviews of Modern Physics, 13, 203–232.
Penington, G. (2019). Entanglement wedge reconstruction and the information paradox. https://arxiv.org/abs/1905.08255
Penrose, R. (1971). Angular momentum: an approach to combinatorial spacetime. In T. Bastin (Ed.), Quantum Theory and Beyond (pp. 151–180). Cambridge University Press. https://math.ucr.edu/home/baez/penrose/
Perrin, J. (1913). Les Atomes. Paris: Libraire Felix Alcan.
Peskin, M. E. (1994). Spin, mass, and symmetry. https://arxiv.org/abs/hep-ph/9405255
Peskin, M. E. & Schroeder, D. V. (1995). An Introduction to Quantum Field Theory. Westview Press.
Pessa, E. (2009). The concept of particle in quantum field theory. https://arxiv.org/abs/0907.0178
Phillips, P. W. (2023). Fifty years of Wilsonian renormalization and counting. https://arxiv.org/abs/2309.02484
Pierre Auger Collaboration. (2007). Correlation of the highest-energy cosmic rays with nearby extragalactic objects. Science, 318, 938–943.
———. (2010). Measurement of the depth of maximum of extensive air showers above \(10^{18}\) eV. Physical Review Letters, 104, 091101.
———. (2020a). Features of the energy spectrum of cosmic rays above \(2.5 \times 10^{18}\) eV using the Pierre Auger Observatory. Physical Review Letters, 125, 121106. https://arxiv.org/abs/2008.06488
———. (2020b). Measurement of the cosmic ray energy spectrum above \(2.5 \times 10^{18}\) eV using the Pierre Auger Observatory. Physical Review D, 102, 062005. https://arxiv.org/abs/2008.06486
Preskill, J. (2013). We are all Wilsonians now. https://quantumfrontiers.com/2013/06/18/we-are-all-wilsonians-now/
———. (2018). Quantum computing in the NISQ era and beyond. https://arxiv.org/abs/1801.00862
———. (2021). Quantum computing 40 years later. https://arxiv.org/abs/2106.10522
Proietti, M. et al. (2019). Experimental test of local observer independence. Science Advances, 5, 9832. https://arxiv.org/abs/1902.05080
Pusey, M. F., Barrett, J., & Rudolph, T. (2012). On the reality of the quantum state. Nature Physics, 8, 476. https://arxiv.org/abs/1111.3328
Putnam, H. (1975). A philosopher looks at quantum mechanics. In Mathematics, Matter and Method. Philosophical Papers, vol. 1 (pp. 130–158). Cambridge University Press. (Originally published in 1965).
———. (2005). A philosopher looks at quantum mechanics (again)*. *The British Journal for the Philosophy of Science*, 56, 615–634. https://www.jstor.org/stable/3541860
Raman, V. V. & Forman, P. (1969). Why was it Schrödinger who developed de Broglie’s ideas? Historical Studies in the Physical Sciences, 1, 291–314. https://www.jstor.org/stable/27757299
Redhead, M. (1982). Quantum field theory for philosophers. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 1982, 57–99.
———. (1988). A philosopher looks at quantum field theory. In H. R. Brown & R. Harré (Eds.), Philosophical Foundations of Quantum Field Theory (pp. 9–24). Oxford University Press.
Reece, R. (2007). Quantum field theory: An introduction. http://rreece.github.io/publications/pdf/2007.Reece.Quantum-Field-Theory-An-Introduction.pdf
Reichert, P. & Lazarovici, D. (2022). The point of primitive ontology. Foundations of Physics, 52, 1–18. http://philsci-archive.pitt.edu/21425/1/The_point_of_primitive_ontology.pdf
Romero, G. E. (2015). On the ontology of spacetime: Substantivalism, relationism, eternalism, and emergence. Foundations of Science, 22, 141–159.
Rosaler, J. (2022). Dogmas of effective field theory: Scheme dependence, fundamental parameters, and the many faces of the Higgs naturalness principle. Foundations of Physics, 52, 1–32. https://link.springer.com/article/10.1007/s10701-021-00510-4
Rubbia, C. (1984). Experimental observation of the intermediate vector bosons \(W^{+}\), \(W^{-}\), and \(Z^{0}\). Nobel lecture, December 8, 1984. https://www.nobelprize.org/uploads/2018/06/rubbia-lecture.pdf
Ruetsche, L. (2002). Interpreting quantum field theory. Philosophy of Science, 69, 348–378.
———. (2018). Renormalization group realism: The ascent of pessimism. Philosophy of Science, 85, 1176–1189. https://www.jstor.org/stable/26627776
Russell, B. (1992). The Analysis of Matter. Routledge. (Originally published in 1927).
Ryden, B. (2003). Introduction to Cosmology. Addison Wesley.
Salam, A. & Ward, J. C. (1964a). Electromagnetic and weak interactions. Physics Letters, 13, 168–171.
———. (1964b). Gauge theory of elementary interactions. Physical Review, 136, 763–768.
Saunders, S. (2021). Branch-counting in the Everett interpretation of quantum mechanics. Proceedings of the Royal Society A, 477, 20210600. https://royalsocietypublishing.org/doi/10.1098/rspa.2021.0600
Schlingemann, D. (1998). From euclidean field theory to quantum field theory. https://arxiv.org/abs/hep-th/9802035
Schlosshauer, M. (2005). Decoherence, the measurement problem, and interpretations of quantum mechanics. Reviews of Modern Physics, 76, 1267–1305. https://arxiv.org/abs/quant-ph/0312059
Schlosshauer, M. & Fine, A. (2012). Implications of the Pusey-Barrett-Rudolph quantum no-go theorem. Physical Review Letters, 108, 260404. https://arxiv.org/abs/1203.4779
Schönberg, M. (1954). On the hydrodynamical model of the quantum mechanics. Il Nuovo Cimento, 12, 103–133.
Schreiber, U. (2016). Learn about supersymmetry and Deligne’s theorem. https://www.physicsforums.com/insights/supersymmetry-delignes-theorem/
———. (2020). Differential cohomology in a cohesive \(\infty\)-topos. https://ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos
Schroeren, D. (2021). Symmetry fundamentalism in quantum mechanics. Philosophical Studies. https://link.springer.com/article/10.1007%2Fs11098-021-01634-z
Schrödinger, E. (1935). Discussion of probability relations between separated systems. Mathematical Proceedings of the Cambridge Philosophical Society, 31, 555–563.
———. (1936). Probability relations between separated systems. Mathematical Proceedings of the Cambridge Philosophical Society, 32, 446–452.
———. (1952a). Are there quantum jumps? Part I. The British Journal for the Philosophy of Science, 3, 109–123. https://www.jstor.org/stable/685552
———. (1952b). Are there quantum jumps? Part II. The British Journal for the Philosophy of Science, 3, 109–123. https://www.jstor.org/stable/685266
———. (1953). What is matter? Scientific American, 189, 52–57. https://www.jstor.org/stable/24944334
Schwartz, M. D. (2014). Quantum Field Theory and the Standard Model. Cambridge University Press.
Schweber, S. S. (1961). An Introduction to Relativistic Quantum Field Theory. Harper & Row.
Schwichtenberg, J. (2015). Physics from Symmetry. Springer.
Sebens, C. T. (2019). How electrons spin. Studies in History and Philosophy of Science Part B, 68, 40–50. https://arxiv.org/abs/1806.01121
Seidewitz, E. (2017). Avoiding Haag’s theorem with parameterized quantum field theory. Foundations of Physics, 47, 355–374. https://arxiv.org/abs/1501.05658
Seifert, V. A. (2024). The chemical bond is a real pattern. Philosophy of Science. https://philpapers.org/archive/SEITCB-2.pdf
Shifman, M. (2012). Advanced Topics in Quantum Field Theory: A lecture course. Cambridge University Press.
Shimony, A. (1984). Contextual hidden variables theories and Bell’s inequalities. The British Journal for the Philosophy of Science, 35, 25–45. https://www.jstor.org/stable/687555
Simon, B. (1976). Quantum dynamics: From automorphism to Hamiltonian. In E. H. Lieb (Ed.), Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann (pp. 327–350). Princeton University Press. http://www.math.caltech.edu/SimonPapers/R12.pdf
Slansky, R. (1981). Group theory for unified model building. Physics Reports, 79, 1–128. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.126.1581&rep=rep1&type=pdf
Stacey, B. C. (2014). Von Neumann was not a quantum Bayesian. https://arxiv.org/abs/1412.2409
Stein, H. (2021). Physics and philosophy meet: The strange case of Poincaré. Foundations of Physics, 51, 1–24.
Steinhardt, P. J. (1983). Natural inflation. In The Very Early Universe: Proc. Nuffield Workshop (pp. 251–66). Cambridge University Press.
Stopp, F., Ortiz-Gutiérrez, L., Lehec, H., & Schmidt-Kaler, F. (2021). Single ion thermal wave packet analyzed via time-of-flight detection. New Journal of Physics, 23, 063002. https://iopscience.iop.org/article/10.1088/1367-2630/abffc0
Streater, R. & Wightman, A. (1964). PCT, spin and statistics, and all that. New York: Benjamin.
Summers, S. J. (1999). On the Stone-von Neumann uniqueness theorem and its ramifications. In John von Neumann and the Foundations of Quantum Physics (pp. 135–152). Budapest: Kluwer.
’t Hooft, G. (1971). Renormalizable Lagrangians for massive Yang-Mills fields. Nuclear Physics B, 35, 167–188.
———. (1978). Extended objects in gauge field theories. In D. H. Bod & A. N. Kamal (Eds.), Particles and Fields (pp. 165–198). New York: Plenum.
———. (1994). Under the Spell of the Gauge Principle. World Scientific.
———. (1999). A confrontation with infinity. Nobel Lecture, December 8, 1999. https://www.nobelprize.org/prizes/physics/1999/thooft/lecture/
———. (2005). The conceptual basis of quantum field theory. https://dspace.library.uu.nl/bitstream/handle/1874/22670/hooft_05_conceptualbasisofquantumfieldtheory.pdf
———. (2007). Lie groups in physics. http://www.staff.science.uu.nl/~hooft101/lectures/lieg07.pdf
———. (2014). The cellular automaton interpretation of quantum mechanics. https://arxiv.org/abs/1405.1548
———. (2021). An unorthodox view on quantum mechanics. https://arxiv.org/abs/2104.03179
Tegmark, M. (1993). Apparent wave function collapse caused by scattering. Foundations of Physics Letters, 6, 571–590. https://arxiv.org/abs/gr-qc/9310032
Teller, P. (1997). An Interpretive Introduction to Quantum Field Theory. Princeton University Press.
———. (2000). The gauge argument. Philosophy of Science, 67, 466–481.
Tong, D. (2006). Lectures on Quantum Field Theory. https://www.damtp.cam.ac.uk/user/tong/qft.html
———. (2022). Lectures on Supersymmetric Field Theory. https://www.damtp.cam.ac.uk/user/tong/susy.html
Tumulka, R. (2017). Bohmian mechanics. https://arxiv.org/abs/1704.08017
van Hove, L. (1958). Von Neumann’s contributions to quantum theory. Bulletin of the American Mathematical Society, 64, 95–100. https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society-new-series/volume-64/issue-3.P2/Von-Neumanns-contributions-to-quantum-theory/bams/1183522374.full
van Nieuwenhuizen, P. (1981). Supergravity. Physics Reports, 68, 189–398.
Vákár, M. (2011). Principal bundles and gauge theories. https://arxiv.org/abs/2110.06334
Vitagliano, E., Tamborra, I., & Raffelt, G. (2020). Grand unified neutrino spectrum at Earth: Sources and spectral components. Reviews of Modern Physics, 92, 045006. https://arxiv.org/abs/1910.11878
von Neumann, J. (1955). The Mathematical Foundations of Quantum Mechanics. (R. T. Beyer, Trans.). Princeton University Press. (Originally published in German in 1932).
Wall, C. T. C. (1964). Graded Brauer groups. Journal für Die Reine Und Angewandte Mathematik, 213, 187–199.
Wallace, D. (2011). Taking particle physics seriously: A critique of the algebraic approach to quantum field theory. Studies in History and Philosophy of Modern Physics, 42, 116–125.
———. (2012). The Emergent Multiverse. Oxford University Press.
———. (2013). Inferential vs dynamical conceptions of physics. https://arxiv.org/abs/1306.4907
———. (2014). Deflating the Aharonov-Bohm effect. https://arxiv.org/abs/1407.5073
———. (2016). What is orthodox quantum mechanics? https://arxiv.org/abs/1604.05973
———. (2018). Decoherence and its role in the modern measurement problem. https://arxiv.org/abs/1111.2187
———. (2020). Lessons from realistic physics for the metaphysics of quantum theory. Synthese, 197, 4303–4318. https://link.springer.com/article/10.1007/s11229-018-1706-y
———. (2022). The sky is blue, and other reasons quantum mechanics is not underdetermined by evidence. https://arxiv.org/abs/2205.00568
Way, R. (2010). Introduction to connections on principal fibre bundles. http://personal.maths.surrey.ac.uk/T.Bridges/GEOMETRIC-PHASE/Connections_intro.pdf
Weinberg, S. (1964a). Feynman rules for any spin. Physical Review, 133, B1318.
———. (1964b). Feynman rules for any spin II: Massless particles. Physical Review, 134, B882.
———. (1967). A model of leptons. Physical Review Letters, 19, 1264–1266. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.19.1264
———. (1977). The First Three Minutes. Basic Books.
———. (1979). Conceptual foundations of the unified theory of weak and electromagnetic interactions. Nobel lecture, December 8, 1979. https://www.nobelprize.org/uploads/2018/06/weinberg-lecture.pdf
———. (1997a). What is an elementary particle? Beam Line, 27, 17–21. https://www.slac.stanford.edu/pubs/beamline/27/1/27-1-weinberg.pdf
———. (1997b). What is quantum field theory, and what did we think it is? Conceptual Foundations of Quantum Field Theory: Proceedings, Symposium and Workshop, Boston, USA, March 1-3, 1996. http://arxiv.org/abs/hep-th/9702027
Weyl, H. (1918). Raum, Zeit, Materie.
———. (1929). Elektron und gravitation. Zeitschrift für Physik, 56, 330–352.
———. (2009). Philosophy of Mathematics and Natural Science. Princeton University Press. (Originally published in German in 1927).
Wheeler, J. A. (1957). Assessment of Everett’s "relative state" formulation of quantum theory. Reviews of Modern Physics, 29, 46–465.
Wigner, E. P. (1939). On unitary representations of the inhomogeneous Lorentz group. Annals of Mathematics, 40, 149–204.
———. (1954). Conservation laws in classical and quantum physics. Progress of Theoretical Physics, 11, 437–440. https://academic.oup.com/ptp/article/11/4-5/437/1831457
———. (1959). Group Theory and its Application to the Quantum Mechanics of Atomic Spectra. Academic Press. (Originally published in German in 1931).
———. (1961). Remarks on the mind-body question. In I. J. Good (Ed.), The Scientist Speculates: An Anthology of Partly-Baked Ideas. London: Heinemann.
Wilhelm, I. (2022). Centering the Everett interpretation. https://philpapers.org/rec/WILCTE-4
Williams, P. (2019). Scientific realism made effective. British Journal for the Philosophy of Science, 70, 209–237. https://www.journals.uchicago.edu/doi/full/10.1093/bjps/axx043
Wilson, K. (1974). The renormalization group and the \(\varepsilon\) expansion. Physics Reports, 12, 75–199.
Witten, E. (1998). Anti-de Sitter space and holography. Advances in Theoretical and Mathematical Physics, 2, 253–291. https://arxiv.org/abs/hep-th/9802150
Wu, J. (2021). Explaining universality: infinite limit systems in the renormalization group method. Synthese, 199, 14897–14930. https://link.springer.com/article/10.1007/s11229-021-03448-2
Wuthrich, C. (2014). Putnam looks at quantum mechanics (again and again). https://arxiv.org/abs/1406.5737
Yang, C. N. (1996). Symmetry and physics. Proceedings of the American Philosophical Society, 140, 267–288. https://www.jstor.org/stable/pdf/987310.pdf
Yang, C. N. & Mills, R. L. (1954). Conservation of isotopic spin and isotopic gauge invariance. Physical Review, 96, 191–195.
Yock, P. (2018). Newton’s hypotheses on the structure of matter. https://arxiv.org/abs/1807.05486
Zapata-Carratala, C. (2021). Dimensioned algebra: The mathematics of physical quantities. https://arxiv.org/abs/2108.08703
Zee, A. (2003). Quantum Field Theory in a Nutshell. Princeton University Press.
Zeidler, E. (2007). Quantum Field Theory I: Basics in mathematics and physics, Vol. 1. Springer.
———. (2008). Quantum Field Theory II: Quantum electrodynamics, Vol. 2. Springer.
———. (2011). Quantum Field Theory III: Gauge theory, Vol. 3. Springer.
Zurek, W. H. (1991). Decoherence and the transition from quantum to classical. Physics Today, 44, 36. https://www.unicamp.br/~chibeni/textosdidaticos/zurek-1991.pdf
———. (2001). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75, 715–775. https://arxiv.org/abs/quant-ph/0105127
———. (2003). Decoherence and the transition from quantum to classical–Revisited. https://arxiv.org/abs/quant-ph/0306072
———. (2022). Quantum theory of the classical: Einselection, envariance, quantum Darwinism and extantons. https://arxiv.org/abs/2208.09019
Zyla, P.A. et al. (Particle Data Group). (2021). Review of Particle Physics. Progress of Theoretical and Experimental Physics, 2020, 083C01. (and 2021 update). https://pdg.lbl.gov/2021/reviews/contents_sports.html

  1. Lucretius (1995), p. TODO.↩︎

  2. Nail (2018).↩︎

  3. Yock (2018).↩︎

  4. Einstein (1905b).↩︎

  5. Perrin (1913).↩︎

  6. Russell (1992).↩︎

  7. Weyl (2009).↩︎

  8. Patterson (2007).↩︎

  9. Feynman (1963).↩︎

  10. Holm (2011a) and Holm (2011b).↩︎

  11. Buckingham (1914).↩︎

  12. Kasprzak, Lysik, & Rybaczuk (1990).↩︎

  13. Duff, Okun, & Veneziano (2001).↩︎

  14. Janyska, Modugno, & Vitolo (2007).↩︎

  15. Zapata-Carratala (2021).↩︎

  16. Heaviside (1893), pp. vi–vii.↩︎

  17. Einstein (1905d).↩︎

  18. Einstein (1905a).↩︎

  19. Stein (2021), p. 69.↩︎

  20. Maudlin (2012), p. TODO.↩︎

  21. Wu (2021).↩︎

  22. Caulton (2015).↩︎

  23. Caulton & Butterfield (2012).↩︎

  24. de Queiroz, Lachieze-Rey, & Simon (2014).↩︎

  25. Noether (1918).↩︎

  26. Wigner (1954).↩︎

  27. Brading (2002).↩︎

  28. Baez (2018).↩︎

  29. Goyal (2020).↩︎

  30. Weyl (1918).↩︎

  31. Weyl (1929).↩︎

  32. Pauli (1941).↩︎

  33. Yang & Mills (1954).↩︎

  34. ’t Hooft (1994).↩︎

  35. O’Raifeartaigh (1997).↩︎

  36. Teller (2000).↩︎

  37. ’t Hooft (2007).↩︎

  38. Greaves & Wallace (2011).↩︎

  39. Afriat (2013).↩︎

  40. Schwichtenberg (2015).↩︎

  41. Dewar (2019).↩︎

  42. Yang (1996).↩︎

  43. Weyl (1929), p. TODO.↩︎

  44. Wigner (1959).↩︎

  45. Reece (2007), p. 27.↩︎

  46. Schweber (1961), p. TODO.↩︎

  47. Simon (1976).↩︎

  48. Summers (1999).↩︎

  49. Keller, Papadopoulos, & Reyes-Lega (2007).↩︎

  50. Schroeren (2021).↩︎

  51. Ney & Albert (2013).↩︎

  52. Feynman & Hibbs (1965), p. 6.↩︎

  53. Feynman & Hibbs (1965), p. 9.↩︎

  54. Kelvin (1901).↩︎

  55. Bacciagaluppi & Valentini (2009).↩︎

  56. von Neumann (1955).↩︎

  57. van Hove (1958).↩︎

  58. Jordan, Neumann, & Wigner (1934).↩︎

  59. Baez (2011).↩︎

  60. Wallace (2016).↩︎

  61. Wallace (2020).↩︎

  62. Carcassi, Calderon, & Aidala (2023).↩︎

  63. Dutailly (2014), p. 11–13.↩︎

  64. Schrödinger (1952a).↩︎

  65. Schrödinger (1952b).↩︎

  66. Born (1953).↩︎

  67. Joos & Zeh (1985).↩︎

  68. Bell (2004a).↩︎

  69. Zurek (1991).↩︎

  70. Zurek (2001).↩︎

  71. Zurek (2003).↩︎

  72. Joos, E. et al. (2003).↩︎

  73. Schlosshauer (2005).↩︎

  74. Drossel (2015), p. 51–2.↩︎

  75. Wallace (2018).↩︎

  76. Zurek (2022).↩︎

  77. Cohen (2015).↩︎

  78. Friedrich (2016).↩︎

  79. C. Cao, Hu, Li, & Schwarz (2019).↩︎

  80. Seifert (2024).↩︎

  81. Coecke & Kissinger (2017).↩︎

  82. Preskill (2018).↩︎

  83. Arute, F. et al. (2019).↩︎

  84. Broughton, M. et al. (2020).↩︎

  85. Preskill (2021).↩︎

  86. Feynman (1965).↩︎

  87. Weinberg (1997b), p. 8.↩︎

  88. Baez, Segal, & Zhou (1992), p. 1.↩︎

  89. Peskin & Schroeder (1995).↩︎

  90. Zee (2003).↩︎

  91. Schwartz (2014).↩︎

  92. Tong (2006).↩︎

  93. Zeidler (2007).↩︎

  94. Zeidler (2008).↩︎

  95. Zeidler (2011).↩︎

  96. T. Y. Cao (1999).↩︎

  97. ’t Hooft (2005).↩︎

  98. Coleman & Mandula (1967).↩︎

  99. Wigner (1939) and Bargmann & Wigner (1948).↩︎

  100. Gross (1996).↩︎

  101. Bell (1955).↩︎

  102. Streater & Wightman (1964).↩︎

  103. Greaves & Thomas (2012).↩︎

  104. Ohanian (1986).↩︎

  105. Peskin (1994).↩︎

  106. Sebens (2019).↩︎

  107. Dutailly (2014), p. 37.↩︎

  108. Schlingemann (1998).↩︎

  109. Kontsevich & Segal (2021).↩︎

  110. Dyson (1949).↩︎

  111. Dyson (1952).↩︎

  112. Lehmann, Symanzik, & Zimmermann (1955).↩︎

  113. Weinberg (1964a) and Weinberg (1964b).↩︎

  114. S. P. Martin (2011).↩︎

  115. S. P. Martin & Wells (2023).↩︎

  116. Reece (2007).↩︎

  117. Jaeger (2019).↩︎

  118. Feynman & Hibbs (1965).↩︎

  119. Nguyen (2016).↩︎

  120. Dirac (1963).↩︎

  121. ’t Hooft (1971).↩︎

  122. Wilson (1974).↩︎

  123. Goldenfeld (1992).↩︎

  124. ’t Hooft (1994).↩︎

  125. ’t Hooft (1999).↩︎

  126. Borcherds & Barnard (2002).↩︎

  127. Kadanoff (2013), p. 50.↩︎

  128. Butterfield (2014).↩︎

  129. Butterfield & Bouatta (2015).↩︎

  130. J. D. Fraser (2021).↩︎

  131. Phillips (2023).↩︎

  132. Huggett & Weingard (1995).↩︎

  133. Weinberg (1997b).↩︎

  134. T. Y. Cao (2003).↩︎

  135. Bain (2013a) and Bain (2013b).↩︎

  136. Preskill (2013).↩︎

  137. Glick (2016).↩︎

  138. Williams (2019).↩︎

  139. Ruetsche (2018).↩︎

  140. J. D. Fraser (2018).↩︎

  141. Halvorson (2019).↩︎

  142. Rosaler (2022).↩︎

  143. J. D. Fraser (2018), p. 10.↩︎

  144. Baez (2016).↩︎

  145. Auyang (1995).↩︎

  146. Baez (2016), p. 17.↩︎

  147. Baez (2016), p. 18.↩︎

  148. Einstein (1905c).↩︎

  149. Schrödinger (1953).↩︎

  150. Weinberg (1997b), p. 2.↩︎

  151. Weinberg (1997a).↩︎

  152. Baez et al. (1992), p. 59.↩︎

  153. D. Fraser (2008).↩︎

  154. Pessa (2009).↩︎

  155. Duncan (2012), p. 163–4.↩︎

  156. Myrvold (2015).↩︎

  157. Lazarovici (2018).↩︎

  158. Baker (2009).↩︎

  159. Haag (1955).↩︎

  160. Malament (1996).↩︎

  161. Teller (1997), p. 115.↩︎

  162. Earman & Fraser (2006).↩︎

  163. Klaczynski (2016).↩︎

  164. Ruetsche (2002).↩︎

  165. Bain (2000).↩︎

  166. Duncan (2012), p. 359.↩︎

  167. Seidewitz (2017).↩︎

  168. Redhead (1982).↩︎

  169. Redhead (1988).↩︎

  170. Haag (1992).↩︎

  171. Buchholz (1998).↩︎

  172. Wallace (2011).↩︎

  173. D. Fraser (2011).↩︎

  174. Kastler (2003), p. 6.↩︎

  175. Aharonov & Bohm (1959).↩︎

  176. Healey (2007), ch. 2-4.↩︎

  177. Batterman (2003).↩︎

  178. Wallace (2014).↩︎

  179. Maudlin (2018).↩︎

  180. Frankel (2004).↩︎

  181. nLab authors (2021).↩︎

  182. Way (2010).↩︎

  183. Vákár (2011).↩︎

  184. Maudlin (2007), p. 96.↩︎

  185. Maudlin (2007), p. 101.↩︎

  186. Baez & Muniain (1994).↩︎

  187. Baez & Schreiber (2005).↩︎

  188. Baez & Huerta (2011).↩︎

  189. Schreiber (2020).↩︎

  190. Baez & Stay (2009).↩︎

  191. ’t Hooft (1978).↩︎

  192. ’t Hooft (1994).↩︎

  193. Shifman (2012).↩︎

  194. Haag, Łopuszański, & Sohnius (1975).↩︎

  195. Deligne (2002).↩︎

  196. Ostrik (2004).↩︎

  197. Schreiber (2016).↩︎

  198. Lepine (2016).↩︎

  199. Wall (1964).↩︎

  200. Deligne (1999).↩︎

  201. Freed & Moore (2012).↩︎

  202. Geiko & Moore (2020).↩︎

  203. Baez (2020).↩︎

  204. Connes (1985).↩︎

  205. Schreiber (2016).↩︎

  206. Dimopoulos & Georgi (1981).↩︎

  207. Murayama (2000).↩︎

  208. Arkani-Hamed, Cachazo, & Kaplan (2008).↩︎

  209. Freedman, Nieuwenhuizen, & Ferrara (1976).↩︎

  210. van Nieuwenhuizen (1981).↩︎

  211. Frè (2013), ch. 6.↩︎

  212. S. P. Martin (2016).↩︎

  213. Tong (2022).↩︎

  214. Bertolini (2022).↩︎

  215. Maudlin (2019), p. TODO.↩︎

  216. Maudlin (1995).↩︎

  217. Dürr & Lazarovici (2020).↩︎

  218. Mermin (2022).↩︎

  219. Barad (2007).↩︎

  220. Becker (2018).↩︎

  221. Bunge (1955a).↩︎

  222. Bunge (1955b).↩︎

  223. Einstein, Podolsky, & Rosen (1935).↩︎

  224. Schrödinger (1935).↩︎

  225. Schrödinger (1936).↩︎

  226. Bohm & Aharonov (1957).↩︎

  227. Mermin (1985).↩︎

  228. Caulton (2014).↩︎

  229. Ismael & Schaffer (2020).↩︎

  230. Wigner (1961).↩︎

  231. Deutsch (1985).↩︎

  232. Bong, K.W. et al. (2020).↩︎

  233. Stacey (2014).↩︎

  234. Bell (1964).↩︎

  235. Bell (1966).↩︎

  236. Kochen & Specker (1967).↩︎

  237. Clauser, Horne, Shimony, & Holt (1969).↩︎

  238. d’Espagnat (1979).↩︎

  239. Shimony (1984).↩︎

  240. Bell (2004b), pp. 232–248.↩︎

  241. Greenberger, Horne, Shimony, & Zeilinger (1990).↩︎

  242. Mermin (1990).↩︎

  243. Gisin (1991), Gisin & Peres (1992), and Gisin (1999).↩︎

  244. Conway & Kochen (2006).↩︎

  245. Maudlin (2014).↩︎

  246. Ahmed & Caulton (2014).↩︎

  247. Bohm (1952).↩︎

  248. Bohm (1953).↩︎

  249. Schönberg (1954).↩︎

  250. Raman & Forman (1969).↩︎

  251. Bell (2004b).↩︎

  252. Dürr, Goldstein, & Zanghì (1995).↩︎

  253. Allori, Dürr, Goldstein, & Zanghì (2002).↩︎

  254. Dürr, Goldstein, & Zanghì (2013).↩︎

  255. Tumulka (2017).↩︎

  256. Del Santo & Krizek (2023).↩︎

  257. Bell (1984).↩︎

  258. Dürr, Goldstein, Tumulka, & Zanghì (2004).↩︎

  259. Dürr, Goldstein, Tumulka, & Zanghì (2005).↩︎

  260. Dürr, D. et al. (2014).↩︎

  261. Nikolić (2022).↩︎

  262. Das & Dürr (2019).↩︎

  263. Stopp, Ortiz-Gutiérrez, Lehec, & Schmidt-Kaler (2021).↩︎

  264. Ananthaswamy (2021).↩︎

  265. Esfeld, Lazarovici, Lam, & Hubert (2017).↩︎

  266. Reichert & Lazarovici (2022).↩︎

  267. Caulton (2018).↩︎

  268. Everett (2012), p. 171.↩︎

  269. Everett (1956).↩︎

  270. Everett (1957).↩︎

  271. Wheeler (1957).↩︎

  272. Everett (2012).↩︎

  273. DeWitt (1970).↩︎

  274. DeWitt & Graham (1973).↩︎

  275. Gell-Mann & Hartle (1989).↩︎

  276. Barrett (2011).↩︎

  277. Barrett (2016).↩︎

  278. Everett (2012), p. 150.↩︎

  279. Wallace (2012).↩︎

  280. Joos, E. et al. (2003), p. 22.↩︎

  281. Carroll & Singh (2019).↩︎

  282. Carroll (2019).↩︎

  283. Saunders (2021).↩︎

  284. Wilhelm (2022).↩︎

  285. Wallace (2022).↩︎

  286. Gisin & Del Santo (2023).↩︎

  287. Boughn (2018).↩︎

  288. Frauchiger & Renner (2018).↩︎

  289. Bub (2019).↩︎

  290. Barbado & Del Santo (2023).↩︎

  291. Ghirardi, Rimini, & Weber (1986).↩︎

  292. Ghirardi, Pearle, & Rimini (1990).↩︎

  293. Bassi (2005).↩︎

  294. Putnam (1975).↩︎

  295. Putnam (2005).↩︎

  296. Wuthrich (2014).↩︎

  297. Allori (2022).↩︎

  298. Tegmark (1993).↩︎

  299. Caves, Fuchs, & Schack (2001).↩︎

  300. Fuchs (2002).↩︎

  301. Fuchs (2010).↩︎

  302. Fuchs & Schack (2013).↩︎

  303. Fuchs, Mermin, & Schack (2014).↩︎

  304. Fuchs & Stacey (2016).↩︎

  305. Harrigan & Spekkens (2010).↩︎

  306. Leifer & Spekkens (2013).↩︎

  307. Pusey, Barrett, & Rudolph (2012).↩︎

  308. Schlosshauer & Fine (2012).↩︎

  309. Wallace (2013).↩︎

  310. Nigg, D. et al. (2015).↩︎

  311. Cramer (1986).↩︎

  312. Maudlin (1996).↩︎

  313. Palmer (2009).↩︎

  314. Palmer (2016).↩︎

  315. ’t Hooft (2014).↩︎

  316. Martin-Dussaud, Rovelli, & Zalamea (2018).↩︎

  317. ’t Hooft (2021).↩︎

  318. Hossenfelder & Palmer (2020).↩︎

  319. Adlam, Hance, Hossenfelder, & Palmer (2023).↩︎

  320. Hossenfelder (2023).↩︎

  321. Del Santo & Schwarzhans (2022).↩︎

  322. Brans (1988).↩︎

  323. Palmer (1995).↩︎

  324. Degorre, Laplante, & Roland (2005).↩︎

  325. Hall (2010).↩︎

  326. Ciepielewski (2020).↩︎

  327. Donadi & Hossenfelder (2022).↩︎

  328. Proietti, M. et al. (2019).↩︎

  329. Nikolić (2007).↩︎

  330. Zyla, P.A. et al. (Particle Data Group) (2021).↩︎

  331. Cabibbo (1963).↩︎

  332. Englert & Brout (1964).↩︎

  333. Higgs (1964).↩︎

  334. Guralnik, Hagen, & Kibble (1964).↩︎

  335. Georgi (1999), p. 280.↩︎

  336. Lyre (2008).↩︎

  337. ATLAS Collaboration (2012).↩︎

  338. CMS Collaboration (2012).↩︎

  339. T. Y. Cao (2016).↩︎

  340. Glashow (1961).↩︎

  341. Weinberg (1967).↩︎

  342. Salam & Ward (1964b).↩︎

  343. Salam & Ward (1964a).↩︎

  344. Weinberg (1979).↩︎

  345. Rubbia (1984).↩︎

  346. Chalmers (2017).↩︎

  347. Anzivino, Vaibhav, & Zaccone (2024).↩︎

  348. Hamamatsu (2007).↩︎

  349. LSND Collaboration (1996).↩︎

  350. LSND Collaboration (2001).↩︎

  351. MiniBooNE Collaboration (2018).↩︎

  352. MicroBooNE Collaboration (2021).↩︎

  353. Vitagliano, Tamborra, & Raffelt (2020).↩︎

  354. TODO: Pierre Auger Collaboration (2007), Pierre Auger Collaboration (2010), Pierre Auger Collaboration (2020a), and Pierre Auger Collaboration (2020b).↩︎

  355. Capdevilla, Curtin, Kahn, & Krnjaic (2021).↩︎

  356. Aimè (2022).↩︎

  357. CDF Collaboration (2022).↩︎

  358. Baez & Huerta (2009a).↩︎

  359. Baez & Huerta (2010).↩︎

  360. Pati & Salam (1974).↩︎

  361. Georgi & Glashow (1974).↩︎

  362. Georgi, Quinn, & Weinberg (1974).↩︎

  363. Slansky (1981).↩︎

  364. Georgi (1999).↩︎

  365. Baez & Huerta (2009b).↩︎

  366. Lisi (2007).↩︎

  367. Chester, Marrani, & Rios (2023).↩︎

  368. S. P. Martin (2016), p. 66.↩︎

  369. Dine & Kusenko (2004).↩︎

  370. Baggott (2013).↩︎

  371. Candelas, Horowitz, Strominger, & Witten (1985).↩︎

  372. Maldacena (1998).↩︎

  373. Witten (1998).↩︎

  374. Gopakumar (2011).↩︎

  375. Gopakumar & Mazenc (2022).↩︎

  376. Penrose (1971).↩︎

  377. Ney (2021).↩︎

  378. Einstein & Grossmann (1913).↩︎

  379. Misner, Thorne, & Wheeler (1973).↩︎

  380. Carroll (2004).↩︎

  381. Arntzenius (2012).↩︎

  382. Norton (1993).↩︎

  383. Frè (2013), ch. 4.↩︎

  384. Weinberg (1977).↩︎

  385. Ryden (2003).↩︎

  386. Bahcall, Ostriker, Perlmutter, & Steinhardt (1999).↩︎

  387. Romero (2015).↩︎

  388. Penington (2019).↩︎

  389. Clowe, D. et al. (2006).↩︎

  390. Bahcall (2015).↩︎

  391. Arbey & Mahmoudi (2021).↩︎

  392. Martens (2022).↩︎

  393. J. Martin (2012).↩︎

  394. Guth (1981).↩︎

  395. Albrecht & Steinhardt (1982).↩︎

  396. Linde (1982).↩︎

  397. Baumann (2009).↩︎

  398. Steinhardt (1983).↩︎

  399. Linde (1983).↩︎

  400. Guth (2007).↩︎

  401. Guth (1997).↩︎

  402. Debono & Smoot (2016), figure 4.↩︎

  403. Anderson (1972).↩︎

  404. Gell-Mann (1988).↩︎

  405. Bedau (1997).↩︎

  406. Bunge (2001), p. 72.↩︎

  407. Lisi (2017).↩︎

  408. Anderson (1972), p. 393.↩︎

  409. Bokulich (2011).↩︎