Philosophy of physics

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Contents

  1. Issues and positions
    1. Classical physics
    2. Statistical physics
    3. Emergence
    4. Quantum mechanics
    5. Quantum field theory
    6. Interpretations of quantum mechanics
    7. The standard model of particle physics
    8. Beyond the standard model
    9. Cosmology
    10. Bracketing human experience
    11. Fine-tuning
  2. My thoughts
  3. Annotated bibliography
    1. Einstein, A., Podolsky, B. & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete?
    2. Anderson, P. (1972). More is different.
    3. Redhead, M. (1988). A philosopher looks at quantum field theory.
    4. Giulini, D., E. Joos, C. Kiefer, J. Kupsch, I.O. Stamatescu, & H. Zeh (1996). Decoherence and the Appearance of a Classical World in Quantum Theory.
    5. Pusey, M.F., Barrett, J., & Rudolph, T. (2012). On the reality of the quantum state.
    6. More articles to do
  4. Links and encyclopedia articles
    1. SEP
    2. IEP
    3. Scholarpedia
    4. Wikipedia
    5. Others
    6. Videos
  5. References

Issues and positions

Classical physics

Statistical physics

Emergence

Thermodynamics, statistical mechanics, renormalization.

Quantum mechanics

Foundations of QM:

\[ \hat{H} \: |n\rangle = E_{n} \: |n\rangle \]

\[ |\psi\rangle = \sum_{n} a_{n} \: |n\rangle \]

\[ P(n) = | \langle n | \psi \rangle |^{2} = |a_{n}|^{2} \]

The generators of the representation of a transformation in a Hilbert space are the operators representing the classical Noether charges that are conserved under that transformation.

\[ \hat{U}(x^{\mu}) = e^{ -i \: \hat{P}_\mu \: x^\mu } \]

Secondary properties of QM:

\[ \langle x | n \rangle = \psi_{n}(x) \]

\[ i \hbar \: \partial_{t} \: |\psi\rangle = \hat{H} \: |\psi\rangle \]

\[ i \hbar \: \partial_{t} \: \hat{U}(t) \: |\psi\rangle = \hat{H} \: \hat{U}(t) \: |\psi\rangle \]

\[ \mathcal{H} = \mathcal{H}_\mathrm{S} \otimes \mathcal{H}_\mathrm{E} \]

\[ |\alpha\rangle \otimes |\psi\rangle \rightarrow |\alpha\rangle \otimes |\psi; \alpha\rangle \]

Decoherence

“Atom” (2009) BBC documentary

Jim Al-Khalili tells the story of the greatest scientific discovery ever - that everything is made of atoms.

Quantum field theory

Fields

If we adopt the metaphysics of the fiber bundle to represent chromodynamics, then we must reject the notion that quark color is a universal, or that there are color tropes which can be duplicates, or that quarks are parts of ‘natural sets’ which include all and only the quarks of the same color, for there is no fact about whether any two quarks are the same color or different. Further, we must reject the notion that there is any metaphysically pure relation of comparison between quarks at different points, since the only comparisons available are necessarily dependent on the existence of a continuous path in space-time connecting the points. So it seems that there are no color properties and no metaphysically pure internal relations between quarks.6

But if one asks whether, in this picture, the electromagnetic field is a substance or an instance of a universal or a trope, or some combination of these, none of the options seems very useful. If the electromagnetic field is a connection on a fiber bundle, then one understands what it is by studying fiber bundles directly, not by trying to translate modern mathematics into archaic philosophical terminology.7

Foundations

Spin-statistics theorem

Scattering

Renormalization

Effective field theory

Haag’s theorem

Supersymmetry

Interpretations of quantum mechanics

Figure 1: Interpretations of quantum mechanics (philosophy-in-figures.tumblr.com).

Figure 1: Interpretations of quantum mechanics (philosophy-in-figures.tumblr.com).

The standard model of particle physics

Beyond the standard model

Cosmology

Bracketing human experience

Fine-tuning

My thoughts

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Annotated bibliography

Einstein, A., Podolsky, B. & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete?

My thoughts


Anderson, P. (1972). More is different.

My thoughts


Redhead, M. (1988). A philosopher looks at quantum field theory.

My thoughts


Giulini, D., E. Joos, C. Kiefer, J. Kupsch, I.O. Stamatescu, & H. Zeh (1996). Decoherence and the Appearance of a Classical World in Quantum Theory.

My thoughts


Pusey, M.F., Barrett, J., & Rudolph, T. (2012). On the reality of the quantum state.

My thoughts


SEP

IEP

Scholarpedia

Wikipedia

Others

Videos

References

Anderson, P. W. (1972). More is different. Science, 177, 393–396.

Bain, J. (2000). Against particle/field duality: Asymptotic particle states and interpolating fields in interacting QFT, or Who’s afraid of Haag’s theorem? Erkenntnis, 53, 375–406.

———. (2013a). Effective field theories. In R. Batterman (Ed.), The Oxford Handbook of Philosophy of Physics (pp. 224–254). Oxford University Press.

———. (2013b). Emergence in effective field theories. European Journal for Philosophy of Science, 3, 257–273.

Butterfield, J. (2014). Reduction, emergence, and renormalization. The Journal of Philosophy, 111, 5–49. https://arxiv.org/abs/1406.4354v1

Butterfield, J., & Bouatta, N. (2015). Renormalization for philosophers. Metaphysics in Contemporary Physics, 104, 437–485. https://arxiv.org/abs/1406.4532

Coleman, S., & Mandula, J. (1967). All possible symmetries of the S matrix. Physical Review, 159, 1251–1256.

Earman, J., & Fraser, D. (2006). Haag’s theorem and its implications for the foundations of quantum field theory. Erkenntnis, 64, 305–344.

Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47, 777–780.

Giulini, D. et al. (1996). Decoherence and the Appearance of a Classical World in Quantum Theory. Springer.

Haag, R. (1955). On quantum field theories. Det Kongelige Danske Videnskabernes Selakab, 29.

Haag, R., Łopuszański, J. T., & Sohnius, M. (1975). All possible generators of supersymmetries of the S-matrix. Nuclear Physics B, 88, 257–274.

Healey, R. (2007). Gauging What’s Real. Oxford University Press.

Huggett, N., & Weingard, R. (1995). The renormalisation group and effective field theories. Synthese, 102, 171–194.

Klaczynski, L. (2016). Haag’s theorem in renormalised quantum field theories. https://arxiv.org/abs/1602.00662

Lehmann, H., Symanzik, K., & Zimmermann, W. (1955). Zur formulierung quantisierter feldtheorien. Nuovo Cimento, 1, 205–225.

Lisi, A. G. (2017). Emergence. https://www.edge.org/response-detail/27149

Malament, D. B. (1996). In defence of dogma: Why there cannot be a relativistic quantum mechanics of (localizable) particles. In R. Clifton (Ed.), Perspectives on Quantum Reality (pp. 1–10). Springer.

Maudlin, T. (2007). The Metaphysics Within Physics. Oxford University Press.

Pusey, M. F., Barrett, J., & Rudolph, T. (2012). On the reality of the quantum state. Nature Physics, 8, 476. https://arxiv.org/abs/1111.3328

Redhead, M. (1982). Quantum field theory for philosophers. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 1982, 57–99.

———. (1988). A philosopher looks at quantum field theory. In H. Brown & R. Harré (Eds.), Philosophical Foundations of Quantum Field Theory (pp. 9–24).

Schwichtenberg, J. (2015). Physics from Symmetry. Springer.

Weinberg, S. (1996). What is quantum field theory, and what did we think it is? Conceptual Foundations of Quantum Field Theory: Proceedings, Symposium and Workshop, Boston, USA, March 1-3, 1996. http://arxiv.org/abs/hep-th/9702027


  1. Anderson (1972).

  2. Lisi (2017).

  3. Giulini, D. et al. (1996).

  4. Coleman & Mandula (1967).

  5. Healey (2007), ch. 2-4.

  6. Maudlin (2007), p. 96.

  7. Maudlin (2007), p. 101.

  8. Redhead (1982).

  9. Redhead (1988).

  10. Lehmann, Symanzik, & Zimmermann (1955).

  11. Huggett & Weingard (1995).

  12. Butterfield (2014).

  13. Butterfield & Bouatta (2015).

  14. Huggett & Weingard (1995).

  15. Weinberg (1996).

  16. Bain (2013a) and Bain (2013b).

  17. Haag (1955).

  18. Malament (1996).

  19. Bain (2000).

  20. Earman & Fraser (2006).

  21. Klaczynski (2016).

  22. Haag, Łopuszański, & Sohnius (1975).