References
Aaronson, S. (2001). Letter to James Randi.
https://www.scottaaronson.com/writings/randi.html
———. (2005). The complexity of agreement.
Proceedings of ACM STOC, 634.
———. (2011). Why philosophers should care about
computational complexity. https://arxiv.org/abs/1108.1791
———. (2013). The ghost in the quantum Turing
machine. https://arxiv.org/abs/1306.0159
Abad, L. A. & Khalifa, K. (2015). What are
stylized facts? Journal of Economic Methodology,
22, 143–156.
Achenbach, J. (2015). Why do many reasonable people
doubt science? National Geographic. March 25, 2015. https://www.nationalgeographic.com/magazine/2015/03/science-doubters-climate-change-vaccinations-gmos
Adamson, P. (2015). Philosophy in the Islamic
World: A Very Short Introduction. Oxford University
Press.
Adlam, E., Hance, J. R., Hossenfelder, S., & Palmer, T. N. (2023).
Taxonomy for physics beyond quantum
mechanics. https://arxiv.org/abs/2309.12293
Afriat, A. (2013). Weyl’s gauge argument.
Foundations of Physics, 43, 699–705. http://philsci-archive.pitt.edu/9597/
Agresti, A. & Coull, B. A. (1998). Approximate
is better than "exact" for interval estimation of binomial
proportions. The American Statistician,
52, 119–126.
Aguirre, A., Foster, B., & Merali, Z. (2016). Trick Or Truth?: The mysterious connection between
physics and mathematics. Springer.
Aharonov, Y. & Bohm, D. (1959). Significance of
electromagnetic potentials in the quantum theory. Physical
Review, 115, 485–491. https://journals.aps.org/pr/abstract/10.1103/PhysRev.115.485
Ahmed, A. & Caulton, A. (2014). Causal decision
theory and EPR correlations. Synthese,
191, 4315–4352. http://philsci-archive.pitt.edu/10992/
Aifer, M. et al. (2023). Thermodynamic linear
algebra. https://arxiv.org/abs/2308.05660
Aimè, C. (2022). Muon collider physics
summary. https://arxiv.org/abs/2203.07256
Alain, G. & Bengio, Y. (2016). Understanding
intermediate layers using linear classifier probes. https://arxiv.org/abs/1610.01644
Albert, D. Z. (1992). Quantum Mechanics and
Experience. Harvard University Press.
Albrecht, A. & Steinhardt, P. J. (1982). Cosmology for Grand Unified Theories with radiatively
induced symmetry breaking. Physics Review Letters,
48, 1220–1223. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.48.1220
Aldrich, J. (1997). R. A. Fisher and the making of
maximum likelihood 1912-1922. Statistical Science,
12, 162–176.
Allain, R. (2013). What’s wrong with the scientific
method? Wired. April 1, 2013. https://www.wired.com/2013/04/whats-wrong-with-the-scientific-method/
Allori, V. (2022). What is it like to be a
relativistic GRW theory? Or: Quantum mechanics and relativity, still in
conflict after all these years. Foundations of Physics,
52, 79. https://doi.org/10.1007/s10701-022-00595-5
Allori, V., Dürr, D., Goldstein, S., & Zanghì, N. (2002). Seven steps towards the classical world.
Journal of Optics B: Quantum and Semiclassical Optics,
4, 482. https://arxiv.org/abs/quant-ph/0112005
Amari, S. (1993). Backpropagation and stochastic
gradient descent method. Neurocomputing,
5, 185–196.
———. (1998). Natural gradient works efficiently in
learning. Neural Computation, 10,
251–276.
———. (2016). Information Geometry and Its
Applications. Springer Japan.
Ananthaswamy, A. (2021). This simple experiment
could challenge standard quantum theory. Scientific
American. https://www.scientificamerican.com/article/this-simple-experiment-could-challenge-standard-quantum-theory/
Anderson, C. (2008). The End of Theory: The data
deluge makes the scientific method obsolete. Wired. June
23, 2008. https://www.wired.com/2008/06/pb-theory/
Anderson, J. A. & Rosenfeld, E. (1998). Talking Nets: An oral history of neural
networks. MIT Press.
Anderson, P. W. (1972). More is different.
Science, 177, 393–396. http://science.sciencemag.org/content/177/4047/393
Andrews, M. (2018). Does natural selection explain
why you exist? Assessing Terrence Deacon’s hierarchic
transitions. https://evolution-institute.org/does-natural-selection-explain-why-you-exist/
———. (2023). The devil in the data: Machine
learning & the theory-free ideal. https://philsci-archive.pitt.edu/22690/1/ML_Atheoreticity.pdf
Andrews, P. W. & Thomson Jr, J. A. (2009). The
bright side of being blue: Depression as an adaptation for analyzing
complex problems. Psychological Review,
116, 620.
Anscombe, G. E. M. (1959). An Introduction to
Wittgenstein’s Tractatus. Harper & Row.
Anzivino, C., Vaibhav, V., & Zaccone, A. (2024). Random close packing of binary hard spheres predicts the
stability of atomic nuclei. https://arxiv.org/abs/2405.11268
Arbey, A. & Mahmoudi, F. (2021). Dark matter
and the early Universe: a review. https://arxiv.org/abs/2104.11488
Aristotle. (1993). Posterior Analytics. (J.
Barnes, Trans.). Oxford: Clarendon Press. (Originally
written in 350 BCE).
———. (2007). Posterior Analytics. (G. R. G. Mure,
Trans.). (Originally written in 350 BCE). https://web.archive.org/web/20070427034930/http://etext.library.adelaide.edu.au/a/aristotle/a8poa/
Arkani-Hamed, N., Cachazo, F., & Kaplan, J. (2008). What is the simplest quantum field theory? https://arxiv.org/abs/0808.1446
Armstrong, S., Sotala, K., & OhEigeartaigh, S. S. (2014). The errors, insights and lessons of famous AI
predictions–and what they mean for the future. Journal of
Experimental & Theoretical Artificial Intelligence,
26, 317–342. https://www.fhi.ox.ac.uk/wp-content/uploads/FAIC.pdf
Arntzenius, F. (2012). Space, Time, and
Stuff. Oxford University Press.
Aronson, D. (2007). Evidence-Based Technical
Analysis. John Wiley & Sons.
Arras, K. O. (1998). An introduction to error
propagation: Derivation, meaning and examples of Cy = FxCxFx⊤.
EPFL-ASL-TR-98-01 R3. http://srl.informatik.uni-freiburg.de/papers/arrasTR98.pdf
Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A.
(2017). Deep Reinforcement Learning: A Brief Survey.
IEEE Signal Processing Magazine, 34,
26–38.
Arute, F. et al. (2019). Quantum supremacy using a
programmable superconducting processor. Nature,
574, 505–510. https://www.nature.com/articles/s41586-019-1666-5
Asch, M. et al. (2018). Big data and extreme-scale
computing: Pathways to Convergence-Toward a shaping strategy for a
future software and data ecosystem for scientific inquiry.
The International Journal of High Performance Computing
Applications, 32, 435–479.
Aschenbrenner, L. (2024). Situational Awareness:
The decade ahead. https://situational-awareness.ai/wp-content/uploads/2024/06/situationalawareness.pdf
Atherton, M. (1996). Lady Mary shepherd’s case
against George Berkeley. British Journal for the History of
Philosophy, 4, 347–366.
Atiyah, M. et al. (1994). Responses to "Theoretical
Mathematics: Toward a cultural synthesis of mathematics and theoretical
physics", by A. Jaffe and F. Quinn. Bulletin of the American
Mathematical Society, 30, 178–207. https://arxiv.org/abs/math/9404229
ATLAS and CMS Collaborations. (2011). Procedure for
the LHC Higgs boson search combination in Summer 2011.
CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11. http://cds.cern.ch/record/1379837
ATLAS Collaboration. (2012a). Combined search for
the Standard Model Higgs boson in pp collisions at $\sqrt{s}$ = 7 TeV with the ATLAS
detector. Physical Review D, 86,
032003. https://arxiv.org/abs/1207.0319
———. (2012b). Observation of a new particle in the
search for the Standard Model Higgs boson with the ATLAS detector at the
LHC. Physics Letters B, 716, 1–29.
https://arxiv.org/abs/1207.7214
ATLAS Statistics Forum. (2011). The CLs method:
Information for conference speakers. http://www.pp.rhul.ac.uk/~cowan/stat/cls/CLsInfo.pdf
Aumann, R. J. (1976). Agreeing to disagree.
The Annals of Statistics, 4, 1236–9.
Auspitz, J. L. (1994). The wasp leaves the bottle:
Charles Sanders Peirce. The American Scholar,
63, 602–618.
Auyang, S. Y. (1995). How Is Quantum Field Theory
Possible? Oxford University Press.
———. (2000). Mathematics and reality: Two notions
of spacetime in the analytic and constructionist views of gauge field
theories. Philosophy of Science,
67, S482–S494.
Awodey, S. (2014). Structuralism, invariance, and
univalence. Philosophia Mathematica,
22, 1–11.
Awodey, S. & Carus, A. W. (2007). Carnap’s
dream: Gödel, Wittgenstein, and Logical
Syntax. Synthese, 159, 23–45. https://link.springer.com/article/10.1007/s11229-006-9066-4
Awodey, S. & Forssell, H. (2013). First-order
logical duality. Annals of Pure and Applied Logic,
164, 319–348.
Awodey, S. & Klein, C. (2004). Carnap
Brought Home: The View from Jena. Open Court.
Axelrod, R. (1980a). Effective choice in the
prisoner’s dilemma. The Journal of Conflict Resolution,
24, 3–25.
———. (1980b). More effective choice in the
prisoner’s dilemma. The Journal of Conflict Resolution,
24, 379–403.
Ayars, A. (2016). Can model-free reinforcement
learning explain deontological moral judgments?
Cognition, 150, 232–242.
Ayer, A. J. (1936). Language, Truth, and
Logic. London: Victor Gollancz Ltd.
Ayer, A. J. & Magee, B. (1978). Logical
positivism and its legacy. Men of Ideas. (BBC television
seires). https://www.youtube.com/watch?v=4cnRJGs08hE
Aytekin, C. (2022). Neural networks are decision
trees. https://arxiv.org/abs/2210.05189
Azzouni, J. (2000). Knowledge and Reference in
Empirical Science. Routledge.
———. (2015). Nominalism, the nonexistence of
mathematical objects. In E. Davis & P. Davis (Eds.),
Mathematics, Substance and Surmise
(pp. 133–145). Springer.
Bacciagaluppi, G. & Valentini, A. (2009). Quantum Theory at the Crossroads: Reconsidering the 1927
Solvay Conference. Cambridge University Press.
https://arxiv.org/abs/quant-ph/0609184
Bach, F. (2022). Learning Theory from First
Principles. (Draft). https://www.di.ens.fr/~fbach/ltfp_book.pdf
———. (2024). Scaling laws of optimization.
https://francisbach.com/scaling-laws-of-optimization/
Baez, J. C. (2002). The octonions.
Bulletin of the American Mathematical Society,
39, 145–205. https://arxiv.org/abs/math/0105155
———. (2011). Division algebras and quantum
theory. Foundations of Physics,
42, 819–855. https://arxiv.org/abs/1101.5690
———. (2016). Struggles with the continuum.
https://arxiv.org/abs/1609.01421
———. (2018). Getting to the bottom of Noether’s
theorem. Talk given at The Philosophy and Physics of Noether’s
Theorems, University of Notre Dame, October 6, 2018. https://math.ucr.edu/home/baez/noether/noether_web.pdf
———. (2020). The tenfold way. https://arxiv.org/abs/2011.14234
Baez, J. C. & Dolan, J. (1995). Higher‐dimensional algebra and topological quantum field
theory. Journal of Mathematical Physics,
36, 6073–6105. https://arxiv.org/abs/q-alg/9503002
Baez, J. C. & Huerta, J. (2009a). Division
algebras and supersymmetry I. https://arxiv.org/abs/0909.0551
———. (2009b). The algebra of grand unified
theories. Bulletin of the American Mathematical Society,
47, 483–552. https://arxiv.org/abs/0904.1556
———. (2010). Division algebras and supersymmetry
II. https://arxiv.org/abs/1003.3436
———. (2011). An invitation to higher gauge
theory. General Relativity and Gravitation,
43, 2335–92. https://arxiv.org/abs/1003.4485
Baez, J. C. & Muniain, J. P. (1994). Gauge
Fields, Knots and Gravity. World Scientific.
Baez, J. C. & Schreiber, U. (2005). Higher
gauge theory. https://arxiv.org/abs/math/0511710
Baez, J. C., Segal, I., & Zhou, Z. (1992). Introduction to Algebraic and Constructive Quantum Field
Theory. Princeton University Press. https://math.ucr.edu/home/baez/bsz.html
Baez, J. C. & Stay, M. (2009). Physics,
topology, logic, and computation: A Rosetta Stone. https://arxiv.org/abs/0903.0340
Baggott, J. (2013). Farewell to Reality: How
modern physics has betrayed the search for scientific truth.
Pegasus Books.
Bahcall, N. A. (2015). Dark matter universe.
Proceedings of the National Academy of Sciences,
112, 12243–5. https://www.pnas.org/doi/10.1073/pnas.1516944112
Bahcall, N. A., Ostriker, J. P., Perlmutter, S., & Steinhardt, P. J.
(1999). The cosmic triangle: Revealing the state of
the universe. Science, 284,
1481–8. https://arxiv.org/abs/astro-ph/9906463
Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation by jointly learning to align
and translate. International Conference on Learning
Representations, 3rd, 2015. https://arxiv.org/abs/1409.0473
Bahri, Y. et al. (2020). Statistical mechanics of
deep learning. Annual Review of Condensed Matter
Physics, 11, 501–528.
Bailey, A. & O’Brien, D. (2014). Hume’s
Critique of Religion: ’Sick Men’s Dreams’.
Springer.
Bain, J. (2000). Against particle/field duality:
Asymptotic particle states and interpolating fields in interacting QFT,
or Who’s afraid of Haag’s theorem? Erkenntnis,
53, 375–406. https://link.springer.com/content/pdf/10.1023/A:1026482100470.pdf
———. (2013a). Effective field theories. In
R. Batterman (Ed.), The Oxford Handbook of
Philosophy of Physics (pp. 224–254). Oxford University
Press.
———. (2013b). Emergence in effective field
theories. European Journal for Philosophy of Science,
3, 257–273.
Bajnok, B. (2013). An Invitation to Abstract
Mathematics. Springer. https://link.springer.com/book/10.1007/978-1-4614-6636-9
Baker, D. J. (2009). Against field interpretations
of quantum field theory. British Journal for the Philosophy
of Science, 60, 585–609. http://philsci-archive.pitt.edu/4350/
Balasubramanian, V. (1996a). A geometric
formulation of Occam’s razor for inference of parametric
distributions. https://arxiv.org/abs/adap-org/9601001
———. (1996b). Statistical inference, Occam’s razor
and statistical mechanics on the space of probability
distributions. https://arxiv.org/abs/cond-mat/9601030
Balestriero, R., Pesenti, J., & LeCun, Y. (2021). Learning in high dimension always amounts to
extrapolation. https://arxiv.org/abs/2110.09485
Banerjee, S., Agarwal, A., & Singla, S. (2024). LLMs will always hallucinate, and we need to live with
this. https://arxiv.org/abs/2409.05746
Barad, K. (2007). Meeting the Universe Halfway:
Quantum Physics and the Entanglement of Matter and Meaning.
Duke University Press.
Barbado, L. C. & Del Santo, F. (2023). On
playing gods: The fallacy of the many-worlds interpretation. https://arxiv.org/abs/2311.03467
Bargmann, V. & Wigner, E. P. (1948). Group
theoretical discussion of relativistic wave equations.
Proceedings of the National Academy of Sciences,
34, 211–223.
Barrett, J. (2004). On the cognitive status of our
best physical theories. http://faculty.sites.uci.edu/jeffreybarrett/articles/
Barrett, J. A. (2011). Everett’s pure wave
mechanics and the notion of worlds. European Journal for
Philosophy of Science, 1, 277–302. https://link.springer.com/article/10.1007/s13194-011-0023-9
———. (2016). Quantum Worlds. Principia: An
International Journal of Epistemology, 20,
45–60.
———. (2019). The Conceptual Foundations of
Quantum Mechanics. Oxford University Press.
Bassi, A. (2005). Collapse models: analysis of the
free particle dynamics. Journal of Physics A: Mathematical
and General, 38, 3173. https://arxiv.org/abs/quant-ph/0410222
Batchelor, S. (1998). Buddhism Without Beliefs.
New York: Riverhead Books.
Batson, J., Haaf, C. G., Kahn, Y., & Roberts, D. A. (2021). Topological obstructions to autoencoding. https://arxiv.org/abs/2102.08380
Batterman, R. W. (2003). Falling cats, parallel
parking and polarized light. Studies in History and
Philosophy of Modern Physics, 34, 527–557. http://philsci-archive.pitt.edu/794/
Battiloro, C. et al. (2024). E(n) equivariant
topological neural networks. https://arxiv.org/abs/2405.15429
Baum, S.D. et al. (2019). Long-term trajectories of
human civilization. Foresight, 21,
55–83.
Baumann, D. (2009). TASI lectures on
inflation. https://arxiv.org/abs/0907.5424
Baydin, A.G. et al. (2019). Etalumis: Bringing
probabilistic programming to scientific simulators at scale. https://arxiv.org/abs/1907.03382
Bayes, T. (1736). An Introduction to the
Doctrine of Fluxions, and a Defence of the Mathematicians Against the
Objections of the Author of The Analyst.
London. (published anonymously).
Becker, A. (2018). What is Real? The unfinished
quest for the meaning of quantum physics. Basic
Books.
Bedau, M. A. (1997). Weak emergence.
Philosophical Perspectives, 11, 375–399.
Behnke, O., Kröninger, K., Schott, G., & Schörner-Sadenius, T.
(2013). Data Analysis in High Energy Physics: A
Practical Guide to Statistical Methods. Wiley.
Belinkov, Y. (2022). Probing classifiers: Promises,
shortcomings, and advances. Computational Linguistics,
48, 207–219.
Belkin, M. (2021). Fit without fear: remarkable
mathematical phenomena of deep learning through the prism of
interpolation. https://arxiv.org/abs/2105.14368
Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling modern machine-learning practice and the
classical bias-variance trade-off. Proceedings of the
National Academy of Sciences, 116,
15849–15854. https://arxiv.org/abs/1812.11118
Bell, J. S. (1955). Time reversal in field
theory. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 231,
479–495.
———. (1964). On the Einstein Podolsky Rosen
paradox. Physics, 1, 195–200. https://journals.aps.org/ppf/pdf/10.1103/PhysicsPhysiqueFizika.1.195
———. (1984). Beables for quantum field
theory. CERN-TH.4035/84. https://cds.cern.ch/record/190753/files/198411046.pdf
———. (2004a). Are there quantum jumps? In
Speakable and Unspeakable in Quantum
Mechanics (2nd ed., pp. 201–212). Cambridge University
Press. (Originally published in 1987).
———. (2004b). Speakable and Unspeakable in
Quantum Mechanics (2nd ed.). Cambridge University
Press. (Originally published in 1987).
Bellman, R. (1952). On the theory of dynamic
programming. Proceedings of the National Academy of
Sciences, 38, 716–719.
Bender, E. M. & Koller, A. (2020). Climbing
towards NLU: On meaning, form, and understanding in the age of
data. Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics,
58, 5185–5198. https://aclanthology.org/2020.acl-main.463.pdf
Bengio, Y. (2009). Learning deep architectures for
AI. Foundations and Trends in Machine Learning,
2, 1–127. https://www.iro.umontreal.ca/~lisa/pointeurs/TR1312.pdf
Bengio, Y. et al. (2025). International AI Safety Report.
https://arxiv.org/abs/2501.17805
Benjamin, D.J. et al. (2017). Redefine statistical
significance. PsyArXiv. July 22, 2017. https://psyarxiv.com/mky9j/
Benjamini, Y. et al. (2021). The ASA president’s
task force statement on statistical significance and
replicability. Annals of Applied Statistics,
16, 1–2. https://magazine.amstat.org/blog/2021/08/01/task-force-statement-p-value/
Bennett, K. (2015). There is no special problem
with metaphysics. Philosophical Studies,
173, 21–37.
Bensusan, H. (2000). Is machine learning
experimental philosophy of science? In ECAI2000 Workshop notes on scientific Reasoning in
Artificial Intelligence and the Philosophy of Science (pp.
9–14).
Berenstain, N. (2014). Necessary laws and chemical
kinds. Australasian Journal of Philosophy,
92, 631–647. https://philpapers.org/rec/BERNLA
Berger, J. O. (2003). Could Fisher, Jeffreys and
Neyman have agreed on testing? Statistical Science,
18, 1–32.
Berger, J. O. & Wolpert, R. L. (1988). The Likelihood
Principle (2nd ed.). Haywood, CA: The Institute of
Mathematical Statistics.
Berlin, I. (1994). A message to the twenty-first
century. (Lecture after he received the honorary degree of Doctor
of Laws at the University of Toronto). http://www.sjpcommunications.org/images/uploads/documents/Isaiah_Berlin.pdf
———. (1999). The Roots of
Romanticism. Princeton University Press.
(Originally published in 1965).
Bertolini, M. (2022). Lectures on
supersymmetry. https://www.sissa.it/tpp/phdsection/OnlineResources/6/susycourse.pdf
Bertsch, A., Alon, U., Neubig, G., & Gormley, M. R. (2023). Unlimiformer: Long-range transformers with unlimited
length input. https://arxiv.org/abs/2305.01625
Bérut, A. et al. (2012). Experimental verification
of Landauer’s principle linking information and thermodynamics.
Nature, 483, 187–189.
doi:10.1038/nature10872.
Bérut, A., Petrosyan, A., & Ciliberto, S. (2015). Information and thermodynamics: Experimental verification
of Landauer’s erasure principle. https://arxiv.org/abs/1503.06537
Bès, A. (2002). A survey of arithmetical
definability. In A tribute to Maurice
Boffa, Soc.Math (pp. 1–54). Belgique. http://lacl.u-pec.fr/bes/publi/survey.pdf
Bès, A. & Choffrut, C. (2022). Decidability of
definability issues in the theory of real addition.
Fundamenta Informaticae, 188, 15–39. https://fi.episciences.org/10753
Bhargava, A., Witkowski, C., Shah, M., & Thomson, M. (2023). What’s the magic word? A control theory of
LLM prompting. https://arxiv.org/abs/2310.04444
Bhaskar, R. (2008). A Realist Theory of
Science. Routledge.
Bhattiprolu, P. N., Martin, S. P., & Wells, J. D. (2020). Criteria for projected discovery and exclusion
sensitivities of counting experiments. https://arxiv.org/abs/2009.07249
Bikchandani, S., Riley, J. G., & Hirshleifer, J. (2013). The Analytics of Uncertainty and Information.
Cambridge University Press.
Billings, D. et al. (2003). Approximating
game-theoretic optimal strategies for full-scale poker.
IJCAI, 3, 661. http://webdocs.cs.ualberta.ca/~duane/publications/pdf/2003ijcai.pdf
Billings, D., Davidson, A., Schaeffer, J., & Szafron, D. (2002).
The challenge of poker. Artificial
Intelligence, 134, 201–240. https://doi.org/10.1016/S0004-3702(01)00130-8
Binmore, K. (2011). Natural Justice. Oxford
University Press.
Bird, A. (2018). The metaphysics of natural
kinds. Synthese, 195, 1397–1426.
https://d1wqtxts1xzle7.cloudfront.net/38555439/Metaphysics_Natural_Kinds_final-libre.pdf
Bird, A. & Tobin, E. (2015). Natural
kinds. Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/natural-kinds/
Birnbaum, A. (1962). On the foundations of
statistical inference. Journal of the American Statistical
Association, 57, 269–326.
Bishop, C. M. (2006). Pattern Recognition and
Machine Learning. Springer.
Bjornsson, G. & Finlay, S. (2010). Metaethical
contextualism defended. Ethics,
121, 7–36.
Blachowicz, J. (2009). How science textbooks treat
scientific method: A philosopher’s perspective. The British
Journal for the Philosophy of Science, 60,
303–344.
———. (2016). There is no scientific method.
The New York Times. July 4, 2016. https://www.nytimes.com/2016/07/04/opinion/there-is-no-scientific-method.html
Black, M. (1964). The gap between "is" and
"should". Philosophical Review,
73, 165–181.
Blackmore, S. J. (1996). Near-death
experiences. Journal of the Royal Society of Medicine,
89, 73–76.
———. (1997). Probability misjudgment and belief in
the paranormal: A newspaper survey. British Journal of
Psychology, 88, 683–689.
Blancke, S. & Boudry, M. (2022). Pseudoscience
as a negative outcome of scientific dialogue: A pragmatic-naturalistic
approach to the demarcation problem. International Studies in
the Philosophy of Science.
Blondel, M., Martins, A. F., & Niculae, V. (2020). Learning with Fenchel-Young losses. Journal of
Machine Learning Research, 21, 1–69.
Bloom, H. (1994). The Western Canon.
Harcourt Brace.
Blumberg, A. E. & Feigl, H. (1931). Logical
positivism: A new movement in European philosophy. The
Journal of Philosophy, 28, 281.
Bodhi. (2005). In the Buddha’s Words: An
anthology of discourses from the Pali Canon. Wisdom
Publications.
Bogatskiy, A. et al. (2023). Explainable
equivariant neural networks for particle physics: PELICAN. https://arxiv.org/abs/2307.16506
Boghossian, P. (2006). Fear of
Knowledge. Oxford University Press.
Bohm, D. (1952). A suggested interpretation of the
quantum theory in terms of ’hidden’ variables, I and II.
Physical Review, 85, 166–193.
———. (1953). Proof that probability density
approaches |ψ|2 in
causal interpretation of quantum theory. Physical
Review, 89, 458–466.
Bohm, D. & Aharonov, Y. (1957). Discussion of
experimental proof for the paradox of Einstein, Rosen, and
Podolsky. Physical Review, 108,
1070.
Bohm, D. & Hiley, B. J. (1993). The Undivided
Universe. London: Routledge.
Boisselle, L. N. (2016). Decolonizing science and
science education in a postcolonial space (Trinidad, a developing
Caribbean nation, illustrates). Sage Open,
6. https://doi.org/10.1177/2158244016635257
Bokulich, P. (2011). Hempel’s dilemma and domains
of physics. Analysis, 71, 646–651.
Bonevac, D. (2003). Deduction: Introductory to
Symbolic Logic (2nd ed.). Blackwell.
Bong, K.W. et al. (2020). A strong no-go theorem on
the Wigner’s friend paradox. Nature Physics,
16, 1199–1205. https://arxiv.org/abs/1907.05607
Boolos, G. (1984). To be is to be the value of a
variable (or to be some values of some variables). Journal of
Philosophy, 81, 430–449. https://www.jstor.org/stable/2026308
Borcherds, R. E. & Barnard, A. (2002). Lectures
on quantum field theory. https://arxiv.org/abs/math-ph/0204014
Borg, E. (2007). Minimal Semantics. Oxford
University Press.
Borges, J. L. (1998). Collected Fictions. (A.
Hurley, Trans.). Penguin Group.
Born, M. (1953). The interpretation of quantum
mechanics. The British Journal for the Philosophy of
Science, 4, 95–106. https://www.jstor.org/stable/685986
Bostrom, N. (2002). Anthropic Bias: Observation
selection effects in science and philosophy.
Routledge.
———. (2003). Are you living in a computer
simulation? Philosophical Quarterly,
53, 243–255.
———. (2005). The fable of the dragon-tyrant.
Journal of Medical Ethics, 31, 273–277.
https://www.nickbostrom.com/fable/dragon.html
———. (2011). A patch for the simulation
argument. Analysis, 71, 54–61.
———. (2013). Existential risk prevention as global
priority. Global Policy, 4, 15–31.
https://www.existential-risk.org/concept.pdf
———. (2014). Superintelligence: Paths, Dangers,
Strategies. Oxford University Press.
———. (2019). The vulnerable world
hypothesis,. Global Policy, 10,
455–476. https://nickbostrom.com/papers/vulnerable.pdf
Bottou, L. (1998). Stochastic gradient descent
tricks. In G. B. Orr & K. R. Muller (Eds.), Neural Networks: Tricks of the trade.
Springer. https://www.microsoft.com/en-us/research/publication/stochastic-gradient-tricks/
Boudry, M. & Pigliucci, M. (2018). Science
Unlimited? The Challenges of Scientism. University of
Chicago Press.
Boughn, S. (2018). Making sense of the many worlds
interpretation. https://arxiv.org/abs/1801.08587
Bousquet, O. et al. (2021). A theory of universal
learning. In Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing (pp.
532–541). https://dl.acm.org/doi/pdf/10.1145/3406325.3451087
Bowling, M., Burch, N., Johanson, M., & Tammelin, O. (2015). Heads-up limit hold’em poker is solved.
Science, 347, 145–149. http://science.sciencemag.org/content/347/6218/145
Box, G. E. P. (1976). Science and
statistics. Journal of the American Statistical
Association, 71, 791–799.
Boyd, R. N. (1983). On the current status of the
issue of scientific realism. Erkenntnis,
19, 45–90.
Brading, K. A. (2002). Which symmetry? Noether,
Weyl, and conservation of electric charge. Studies in History
and Philosophy of Modern Physics, 33, 3–22.
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.569.106&rep=rep1&type=pdf
Bradley, T. D. (2018). What is applied category
theory? https://arxiv.org/abs/1809.05923
Bradley, T. D., Terilla, J., & Vlassopoulos, Y. (2021). An enriched category theory of language: from syntax to
semantics. https://arxiv.org/abs/2106.07890
Brandom, R. (1994). Making it Explicit:
Reasoning, representing, and discursive commitment.
Harvard University Press.
———. (2000). Rorty and His Critics.
Blackwell Publishers.
Brans, C. H. (1988). Bell’s theorem does not
eliminate fully causal hidden variables. International
Journal of Theoretical Physics, 27, 219–226.
https://link.springer.com/article/10.1007/BF00670750
Brassier, R. (2007). Nihil Unbound:
Enlightenment and Extinction. Palgrave
Macmillan.
Brent, J. (1993). Charles Sanders Peirce: A Life.
Indiana University Press.
Bright, L. K. & Heesen, R. (2023). To be
scientific is to be communist. Social Epistemology,
37, 1–10. https://www.tandfonline.com/doi/full/10.1080/02691728.2022.2156308
Bronstein, M. M., Bruna, J., Cohen, T., & Velickovic, P. (2021).
Geometric deep learning: Grids, groups, graphs,
geodesics, and gauges. https://arxiv.org/abs/2104.13478
Broughton, M. et al. (2020). TensorFlow Quantum: A
software framework for quantum machine learning. https://arxiv.org/abs/2003.02989
Brouwer, L. E. J. (1908). Unreliability of the
logical principles. https://arxiv.org/abs/1511.01113
Brown, L. D., Cai, T. T., & DasGupta, A. (2001). Interval estimation for a binomial proportion.
Statistical Science, 16, 101–133. https://projecteuclid.org/euclid.ss/1009213286
Brown, M. R. & Hiley, B. J. (2004). Schrödinger revisited: An algebraic approach.
https://arxiv.org/abs/quant-ph/0005026
Brown, N. (2020). Equilibrium finding for large
adversarial imperfect-information games. (Ph.D. thesis). http://www.cs.cmu.edu/~noamb/thesis.pdf
Brown, N., Bakhtin, A., Lerer, A., & Gong, Q. (2020). Combining deep reinforcement learning and search for
imperfect-information games. https://arxiv.org/abs/2007.13544
Brown, N., Lerer, A., Gross, S., & Sandholm, T. (2019). Deep counterfactual regret minimization. https://arxiv.org/abs/1811.00164
Brown, N. & Sandholm, T. (2017). Safe and
nested subgame solving for imperfect-information games. https://arxiv.org/abs/1705.02955
———. (2018). Superhuman AI for heads-up no-limit
poker: Libratus beats top professionals. Science,
359, 418–424. https://science.sciencemag.org/content/359/6374/418
———. (2019a). Solving imperfect-information games
via discounted regret minimization. Proceedings of the AAAI
Conference on Artificial Intelligence, 33,
1829–1836. https://arxiv.org/abs/1809.04040
———. (2019b). Superhuman AI for multiplayer
poker. Science, 365, 885–890. https://science.sciencemag.org/content/365/6456/885
Brown, S. R. (2008). Moral Virtue and Nature: A
defense of ethical naturalism. Continuum.
Brown, T.B. et al. (2020). Language models are
few-shot learners. (Paper on the GPT-3 model by OpenAI). https://arxiv.org/abs/2005.14165
Browning, J. & LeCun, Y. (2022). AI and the
limits of language. https://www.noemamag.com/ai-and-the-limits-of-language/
Bryant, A. K. (2017). What’s metaphysics all
about? http://www.amandakbryant.com/uploads/3/9/6/3/39633161/bryant_whats_metaphysics.pdf
Bub, J. (2019). ’Two Dogmas’ redux. https://arxiv.org/abs/1907.06240
Bubeck, S. et al. (2023). Sparks of Artificial
General Intelligence: Early experiments with GPT-4. https://arxiv.org/abs/2303.12712
Bubeck, S. & Sellke, M. (2023). A universal law
of robustness via isoperimetry. Journal of the ACM,
70, 1–18. https://dl.acm.org/doi/full/10.1145/3578580
Buchholz, D. (1998). Current trends in axiomatic
quantum field theory. https://arxiv.org/abs/hep-th/9811233
Buchholz, D. & Dybalski, W. (2005). Scattering
in relativistic quantum field theory: basic concepts, tools, and
results. https://arxiv.org/abs/math-ph/0509047v3
Buck, R. C. & Cohen, R. S. (1971). PSA
1970: In Memory of Rudolf Carnap Proceedings of the 1970 Biennial
Meeting Philosophy of Science Association. Springer
Netherlands.
Buckingham, E. (1914). On physically similar
systems; Illustrations of the use of dimensional equations.
Physical Review, 4, 345–376.
Bueno, O. (1999). What is structural empiricism?
Scientific change in an empiricist setting. Erkenntnis,
50, 55–81.
———. (2010). A defense of second-order
logic. Axiomathes, 20, 365–383. https://web.as.miami.edu/personal/obueno/Site/Online_Papers_files/SecnOrd_FINAL.pdf
———. (2011). Structural empiricism, again.
In P. Bokulich & A. Bokulich (Eds.), Scientific
Structuralism (pp. 81–103). Dordrecht:
Springer.
———. (2013). Nominalism in the philosophy of
mathematics. Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/nominalism-mathematics/
Bulatov, A., Kuratov, Y., & Burtsev, M. S. (2022). Recurrent memory transformer. https://arxiv.org/abs/2207.06881
———. (2023). Scaling transformer to 1M tokens and
beyond with RMT. https://arxiv.org/abs/2304.11062
Bunge, M. (1955a). Strife about complementarity
(I). The British Journal for the Philosophy of Science,
6, 1–12. https://www.jstor.org/stable/685570
———. (1955b). Strife about complementarity
(II). The British Journal for the Philosophy of Science,
6, 141–154. https://www.jstor.org/stable/685522
———. (1971). Is scientific metaphysics
possible? The Journal of Philosophy,
68, 507–520.
———. (1974). Treatise on Basic Philosophy,
Volume 1: Sense and Reference. Reidel.
———. (1991a). The power and limits of
reduction. In E. Agazzi (Ed.), The
Problem of Reductionism in Science (pp. 31–49). Dordrecht:
Springer.
———. (1991b). What is science? Does it matter to
distinguish it from pseudoscience? A reply to my commentators.
New Ideas in Psychology, 9, 245–283. https://www.hpsst.com/uploads/6/2/9/3/62931075/bunge__1991__science___pseudoscience.pdf
———. (1996). Finding Philosophy in Social
Science. Yale University Press.
———. (2001). Philosophy in Crisis: The Need for
Reconstruction. Prometheus Books.
———. (2010). Mind and Matter: A Philosophical
Inquiry. Dordrecht: Springer.
———. (2011). Knowledge: Genuine and bogus.
Science & Education, 20, 411–438.
———. (2012). Evaluating Philosophies.
Springer.
Burch, N. (2018). Time and Space: Why imperfect
information games are hard. University of
Alberta. (Ph.D. thesis). https://era.library.ualberta.ca/items/db44409f-b373-427d-be83-cace67d33c41/view/bcb00dca-39e6-4c43-9ec2-65026a50135e/Burch_Neil_E_201712_PhD.pdf
Burch, N., Lanctot, M., Szafron, D., & Gibson, R. (2012). Efficient Monte Carlo counterfactual regret minimization
in games with many player actions. Advances in Neural
Information Processing Systems, 25. https://proceedings.neurips.cc/paper/2012/file/3df1d4b96d8976ff5986393e8767f5b2-Paper.pdf
Burch, N., Moravcik, M., & Schmid, M. (2019). Revisiting CFR+ and alternating updates.
Journal of Artificial Intelligence Research,
64, 429–443. https://www.jair.org/index.php/jair/article/view/11370
Burgess, J. P. (1983). Why I am not a
nominalist. Notre Dame Journal of Formal Logic,
24, 93–105.
Burke, W. L. (1985). Applied Differential
Geometry. Cambridge University Press.
Butterfield, J. (2014). Reduction, emergence, and
renormalization. The Journal of Philosophy,
111, 5–49. https://arxiv.org/abs/1406.4354v1
Butterfield, J. & Bouatta, N. (2015). Renormalization for philosophers. Metaphysics
in Contemporary Physics, 104, 437–485. https://arxiv.org/abs/1406.4532
Button, T. & Walsh, S. (2018). Philosophy
and Model Theory. Oxford University Press.
Caballero, E., Gupta, K., Rish, I., & Krueger, D. (2022). Broken neural scaling laws. https://arxiv.org/abs/2210.14891
Cabibbo, N. (1963). Unitary symmetry and leptonic
decays. Physical Review Letters,
10, 531–533. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.10.531
Cadwalladr, C. (2017). Daniel Dennett: I begrudge
every hour I have to spend worrying about politics. The
Guardian. February 12, 2017. https://www.theguardian.com/science/2017/feb/12/daniel-dennett-politics-bacteria-bach-back-dawkins-trump-interview
Caldeira, J. & Nord, B. (2020). Deeply
uncertain: comparing methods of uncertainty quantification in deep
learning algorithms. Machine Learning: Science and
Technology, 2, 015002. https://iopscience.iop.org/article/10.1088/2632-2153/aba6f3
Calin, O. & Udriste, C. (2014). Geometric
Modeling in Probability and Statistics. Springer
Switzerland.
Camus, A. (1988). The Stranger. (M. Ward, Trans.).
New York: Vintage Books. (Originally published in 1942 as
L’Étranger).
Canatar, A., Bordelon, B., & Pehlevan, C. (2020). Spectral bias and task-model alignment explain
generalization in kernel regression and infinitely wide neural
networks. https://arxiv.org/abs/2006.13198
Candelas, P., Horowitz, G. T., Strominger, A., & Witten, E. (1985).
Vacuum configurations for superstrings.
Nuclear Physics B, 258, 46–74.
Cañizares-Esguerra, J. (2022). Rethinking the
"Western" revolution in science. Science,
376, 467. https://www.science.org/doi/full/10.1126/science.abo5229
Cantwell, G. T. (2022). Approximate sampling and
estimation of partition functions using neural networks. https://arxiv.org/abs/2209.10423
Cao, C., Hu, H., Li, J., & Schwarz, W. H. E. (2019). Physical origin of chemical periodicities in the system
of elements. Pure and Applied Chemistry,
91, 1969–1999. https://www.degruyter.com/document/doi/10.1515/pac-2019-0901/html
Cao, T. Y. (1999). Conceptual Foundations of
Quantum Field Theory. Cambridge University
Press.
———. (2003). Structural realism and the
interpretation of quantum field theory. Synthese,
136, 3–24. https://www.jstor.org/stable/20117384
———. (2016). The Englert-Brout-Higgs mechanism: An
unfinished project. International Journal of Modern Physics
A, 31, 1630061.
Capdevilla, R., Curtin, D., Kahn, Y., & Krnjaic, G. (2021). A no-lose theorem for discovering the new physics of
(g − 2)μ
at muon colliders. https://arxiv.org/abs/2101.10334
Carcassi, G., Calderon, F., & Aidala, C. A. (2023). The unphysicality of Hilbert spaces. https://arxiv.org/abs/2308.06669
Carcassi, G., Maccone, L., & Aidala, C. A. (2020). The four postulates of quantum mechanics are
three. https://arxiv.org/abs/2003.11007
Carnap, R. (1934). On the character of philophical
problems. Philosophy of Science,
1, 5–19.
———. (1936). Testability and meaning.
Philosophy of Science, 3, 419–471.
———. (1937a). Logical Syntax of
Language. Kegan Paul, Trench, Trubner & Co.
(Originally published in German in 1934).
———. (1937b). Testability and
meaning–continued. Philosophy of Science,
4, 1–40.
———. (1938). The logical foundations of the unity
of science. In International
Encyclopedia of Unified Science: Volume I (pp. 42–62).
University of Chicago Press.
———. (1945a). On inductive logic.
Philosophy of Science, 12, 72–97.
———. (1945b). The two concepts of
probability. Philosophy and Phenomenological Research,
5, 513–32.
———. (1947a). Meaning and
Necessity. University of Chicago Press.
———. (1947b). Probability as a guide in
life. Journal of Philosophy, 44,
141–48.
———. (1950a). Empiricism, semantics, and
ontology. Revue Internationale de Philosophie,
4, 20–40. https://www.phil.cmu.edu/projects/carnap/editorial/latex_pdf/1956-ESO.pdf
———. (1950b). Logical Foundations of
Probability. University of Chicago Press.
———. (1952). The Continuum of Inductive
Methods. University of Chicago Press. https://www.phil.cmu.edu/projects/carnap/editorial/latex_pdf/1952-1.pdf
———. (1953). What is probability?
Scientific American, 189, 128–139. https://www.jstor.org/stable/24944342
———. (1955). Meaning and synonymy in natural
languages. Philosophical Studies,
6, 33–47.
———. (1958). Introduction to Symbolic Logic and
its Applications. New York: Dover Publications.
———. (1959). The elimination of metaphysics through
logical analysis of language. In A. J. Ayer (Ed.),
Logical Positivism (pp. 60–81). New York:
The Free Press. (Translated by Arthur Pap; originally
published in 1932 as “Überwindung der Metaphysik durch
logische Analyse der Sprache“ in Erkenntnis, 2, 219–241.). https://philpapers.org/archive/TEO.pdf
———. (1960). Logical Foundations of
Probability. University of Chicago Press.
———. (1966a). Philosophical Foundations of
Physics. Basic Books.
———. (1966b). The aim of inductive logic. In
Studies in Logic and the Foundations of
Mathematics Vol. 44 (pp. 303–318). Elsevier.
———. (1973). Notes on probability and
induction. Synthese, 25, 269–298.
———. (1983). The Logicist foundations of
mathematics. In P. Benacerraf & H. Putnam (Eds.), Philosophy of Mathematics: Selected Readings
(pp. 41–52). Cambridge University Press. (Originally
published in 1931 as "Die logizistische Grundlegung der Mathematik",
Erkenntnis, 2, 91–121.).
———. (1987). On protocol sentences.
Nous, 21, 457–470. (R. Creath & R.
Nollan, Trans. Originally published in 1932 as Über
Protokollsätze. Erkenntnis, 3, 215–228.). http://www.ualberta.ca/~francisp/NewPhil448/Carnap1932ProtocolSentences.pdf
———. (2003). The Logical Structure of the
World. (R. A. George, Trans.). Chicago: Open
Court. (Originally published in 1928 as Der logische Aufbau
der Welt).
Carnap, R. & Schilpp, P. A. (1963). The
Philosophy of Rudolf Carnap. Open Court. http://fitelson.org/confirmation/carnap_schilpp_volume.pdf
Carney, J. (2020). Thinking avant la lettre: A
Review of 4E Cognition. Evolutionary Studies in Imaginative
Culture, 4, 77–90. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250653/
Carroll, L. (1895). What the tortoise said to
Achilles. Mind, 4, 278–280. http://www.ditext.com/carroll/tortoise.html
Carroll, S. M. (2004). Spacetime and
Geometry. Addison Wesley.
———. (2019). Something Deeply Hidden.
Dutton.
Carroll, S. M. & Singh, A. (2019). Mad-Dog
Everettianism: Quantum mechanics at its most minimal. In
What is Fundamental? (pp. 95–104).
Springer. https://arxiv.org/abs/1801.08132
Carter, N. (2009). Visual Group Theory.
Mathematical Association of America.
Cartwright, N. (2001). What is wrong with Bayes
nets? Monist, 84, 242–264. https://doi.org/10.5840/monist20018429
Carus, A. W. (2008). Carnap and
Twentieth-Century Thought. Cambridge University
Press.
Casadei, D. (2012). Estimating the selection
efficiency. Journal of Instrumentation,
7, 08021. https://arxiv.org/abs/0908.0130
Caucheteux, C. & King, J. R. (2020). Language
processing in brains and deep neural networks: Computational convergence
and its limit. https://doi.org/10.1101/2020.07.03.186288
Caulton, A. (2014). Physical entanglement in
permutation-invariant quantum mechanics. https://arxiv.org/abs/1409.0246
———. (2015). The role of symmetry in the
interpretation of physical theories. Studies in History and
Philosophy of Science Part B: Studies in History and Philosophy of
Modern Physics, 52, 153–162. http://philsci-archive.pitt.edu/11571/
———. (2018). A persistent particle ontology for
quantum field theory. Metascience,
27, 439–441. https://link.springer.com/article/10.1007/s11016-018-0323-1
Caulton, A. & Butterfield, J. (2012). Symmetries and paraparticles as a motivation for
structuralism. British Journal for the Philosophy of
Science, 63, 233–285. https://arxiv.org/abs/1002.3730
Cavell, S. (2015). Must We Mean What We Say?
Cambridge University Press. (Originally published in 1969).
Caves, C. M., Fuchs, C. A., & Schack, R. (2001). Quantum probabilities as Bayesian probabilities.
Physical Review A, 65, 022305. https://arxiv.org/abs/quant-ph/0106133
CDF Collaboration. (2022). High-precision
measurement of the W boson
mass with the CDF II detector. Science,
376, 170–176. https://www.science.org/doi/10.1126/science.abk1781
Cesa-Bianchi, N. & Lugosi, G. (2006). Prediction, Learning, and Games.
Cambridge University Press. https://ii.uni.wroc.pl/~lukstafi/pmwiki/uploads/AGT/Prediction_Learning_and_Games.pdf
Chakravartty, A. (2007). A Metaphysics for
Scientific Realism. Cambridge University Press.
———. (2017). Scientific realism.
Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/scientific-realism/
Chalmers, D. (2003). The Matrix as
metaphysics. http://consc.net/papers/matrix.html
Chalmers, D. J. (1996). The Conscious Mind: In
Search of a Fundamental Theory. Oxford University
Press.
———. (2020a). Carnap’s Second Aufbau and David
Lewis’s Aufbau. In Franz Brentano and
Austrian Philosophy (pp. 329–352). Springer. https://philpapers.org/archive/CHACSA-16.pdf
———. (2020b). What is conceptual engineering and
what should it be? Inquiry, 0,
1–18. https://www.tandfonline.com/doi/abs/10.1080/0020174X.2020.1817141
Chalmers, M. (2017). Model physicist. https://cerncourier.com/a/model-physicist/
Chang, X., Li, Y., Oymak, S., & Thrampoulidis, C. (2020). Provable benefits of overparameterization in model
compression: From double descent to pruning neural networks. https://arxiv.org/abs/2012.08749
Chen, E. K. (2018). The intrinsic structure of
quantum mechanics. http://philsci-archive.pitt.edu/15140/
Chen, R. T. Q., Rubanova, Y., Bettencourt, J., & Duvenaud, D.
(2018). Neural ordinary differential
equations. https://arxiv.org/abs/1806.07366
Chen, S., Dobriban, E., & Lee, J. H. (2020). A
group-theoretic framework for data augmentation. https://arxiv.org/abs/1907.10905
Chen, T. & Guestrin, C. (2016). Xgboost: A
scalable tree boosting system. https://arxiv.org/abs/1603.02754
Chen, X. et al. (2018). Open is not enough.
Nature Physics, 15, 113–119. https://www.nature.com/articles/s41567-018-0342-2
Chester, D., Marrani, A., & Rios, M. (2023). Beyond the Standard Model with six-dimensional
spinors. Particles, 6, 144-172. https://arxiv.org/abs/2002.02391
Chevalley, M., Schwab, P., & Mehrjou, A. (2024). Deriving causal order from single-variable interventions:
Guarantees & algorithm. https://arxiv.org/abs/2405.18314
Chew, G. (1961). S-Matrix Theory of Strong
Interactions. New York: Benjamin.
———. (1964). Nuclear democracy and bootstrapping
dynamics. In M. Jacob & G. Chew (Eds.), Strong
Interaction Physics: A Lecture Note Volume (pp. 103–152).
New York: Benjamin.
Chiley, V. et al. (2019). Online normalization for
training neural networks. NeurIPS 2019. https://arxiv.org/abs/1905.05894
Chisholm, R. (1966). Theory of
Knowledge. Prentice Hall.
Chowdhery, A. et al. (2022). PaLM: Scaling language
modeling with pathways. https://arxiv.org/abs/2204.02311
Chu, J. S. & Evans, J. A. (2021). Slowed
canonical progress in large fields of science. Proceedings of
the National Academy of Sciences, 118,
e2021636118. https://www.pnas.org/doi/full/10.1073/pnas.2021636118
Church, A. (1936). A note on the
Entscheidungsproblem. Journal of Symbolic Logic,
1, 40–41.
———. (1940). A formulation of the simple theory of
types. Journal of Symbolic Logic,
5, 56–68. https://doi.org/10.2307/2266170
Church, K. W. & Hestness, J. (2019). A survey
of 25 years of evaluation. Natural Language Engineering,
25, 753–767. https://www.cambridge.org/core/journals/natural-language-engineering/article/survey-of-25-years-of-evaluation/E4330FAEB9202EC490218E3220DDA291
Churchland, P. S. (2011). What Neuroscience Tells Us About
Morality. Princeton University Press.
Ciepielewski, G. (2020). On superdeterministic
rejections of settings independence. https://arxiv.org/abs/2008.00631
Cilibrasi, R. & Vitanyi, P. M. B. (2005). Clustering by compression. IEEE Transactions
on Information Theory, 51, 1523–1545.
Ciresan, D., Meier, U., Masci, J., & Schmidhuber, J. (2012). Multi-column deep neural network for traffic sign
classification. Neural Networks,
32, 333–338. https://arxiv.org/abs/1202.2745
Clark, M. (1963). Knowledge and grounds: A comment
on Mr. Gettier’s paper. Analysis,
24, 46–48.
Clarke, K. A. & Primo, D. M. (2004). The
theoretical implications of the empirical implications of theoretical
models. Paper presented at the Annual Meeting of the American
Political Science Association, September 2004, Chicago.
Clayton, A. (2021). Bernoulli’s Fallacy:
Statistical Illogic and the Crisis of Modern Science.
Columbia University Press.
Clifford, W. K. (1877). The ethics of
belief. Contemporary Review, 29,
289. https://web.archive.org/web/20190427051422/https://www.uta.edu/philosophy/faculty/burgess-jackson/Clifford.pdf
Clopper, C. J. & Pearson, E. S. (1934). The use
of confidence or fiducial limits illustrated in the case of the
binomial. Biometrika, 26, 404–413.
Clowe, D. et al. (2006). A direct empirical proof
of the existence of dark matter. Astrophysical Journal
Letters, 648, 109. https://arxiv.org/abs/astro-ph/0608407
CMS Collaboration. (2012). Observation of a new
boson at a mass of 125 GeV with the CMS experiment at the LHC.
Physics Letters B, 716, 30–61. https://arxiv.org/abs/1207.7235
Coadou, Y. (2022). Boosted decision trees.
https://arxiv.org/abs/2206.09645
Coecke, B. & Kissinger, A. (2017). Picturing Quantum Processes: A first course in quantum
theory and diagrammatic reasoning. Cambridge
University Press.
Coffa, A. (1987). Carnap, Tarski and the search for
truth. Noûs, 21,
547–572. https://www.jstor.org/stable/2215672
———. (1991). The Semantic Tradition from Kant
to Carnap: To the Vienna Station. Cambridge University
Press.
Cohen, J. (1992). A power primer.
Psychological Bulletin, 112, 155–9. https://www2.psych.ubc.ca/~schaller/528Readings/Cohen1992.pdf
Cohen, M. A., Dennett, D. C., & Kanwisher, N. (2016). What is the bandwidth of perceptual experience?
Trends in Cognitive Sciences, 20,
324–335. https://dspace.mit.edu/bitstream/handle/1721.1/112190/nihms769621.pdf
Cohen, M. L. (2015). Explaining and predicting the
properties of materials using quantum theory. MRS
Bulletin, 40, 516–525. https://www.cambridge.org/core/journals/mrs-bulletin/article/explaining-and-predicting-the-properties-of-materials-using-quantum-theory/0BAF1A2783D41470AAE666F6B916ECE5
Cohen, T. S., Weiler, M., Kicanaoglu, B., & Welling, M. (2019).
Gauge equivariant convolutional networks and the
icosahedral CNN. https://arxiv.org/abs/1902.04615
Cohen, T. S. & Welling, M. (2016). Group
equivariant convolutional networks. Proceedings of
International Conference on Machine Learning,
2016, 2990–9. http://proceedings.mlr.press/v48/cohenc16.pdf
Coleman, S. (2020). Sidney Coleman’s Dirac Lecture
"Quantum Mechanics in Your Face". https://arxiv.org/abs/2011.12671
Coleman, S. & Mandula, J. (1967). All possible
symmetries of the S
matrix. Physical Review, 159,
1251–1256.
Collobert, R., Hannun, A., & Synnaeve, G. (2019). A fully differentiable beam search decoder.
International Conference on Machine Learning,
2019, 1341–1350. http://proceedings.mlr.press/v97/collobert19a/collobert19a.pdf
Comte, A. (1835). Cours de la Philosophie
Positive.
Connes, A. (1985). Non-commutative differential
geometry. Publications Mathématiques de L’Institut Des Hautes
Scientifiques, 62, 41–144. https://link.springer.com/article/10.1007/BF02698807
Contestabile, B. (2018). Secular Buddhism and
Justice. Contemporary Buddhism,
19, 237–250.
Convivialist International. (2020). The second
convivialist manifesto: Towards a post-neoliberal world.
Civic Sociology, 1, 12721. https://online.ucpress.edu/cs/article/1/1/12721/112920/THE-SECOND-CONVIVIALIST-MANIFESTO-Towards-a-Post
Conway, J. & Kochen, S. (2006). The free will
theorem. Foundations of Physics,
36, 1441–1473. https://arxiv.org/abs/quant-ph/0604079
Cooper, J. M. & Hutchinson, D. S. (1997). Plato: Complete works. Hackett
Publishing.
Costa, C. F. (2012). Philosophy as a
protoscience. Disputatio, 4,
591–608. https://sciendo.com/pdf/10.2478/disp-2012-0022
Cousins, R. D. (2018). Lectures on statistics in
theory: Prelude to statistics in practice. https://arxiv.org/abs/1807.05996
Cousins, R. D. & Highland, V. L. (1992). Incorporating systematic uncertainties into an upper
limit. Nuclear Instruments and Methods in Physics Research
Section A, 320, 331–335. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.193.1581&rep=rep1&type=pdf
Cowan, G. (1998). Statistical Data Analysis.
Clarendon Press.
———. (2012). Discovery sensitivity for a counting
experiment with background uncertainty. https://www.pp.rhul.ac.uk/~cowan/stat/notes/medsigNote.pdf
———. (2016). Statistics. In C. Patrignani et al.
(Particle Data Group),. Chinese Physics C,
40, 100001. http://pdg.lbl.gov/2016/reviews/rpp2016-rev-statistics.pdf
Cowan, G., Cranmer, K., Gross, E., & Vitells, O. (2011). Asymptotic formulae for likelihood-based tests of new
physics. European Physical Journal C,
71, 1544. https://arxiv.org/abs/1007.1727
———. (2012). Asymptotic distribution for two-sided
tests with lower and upper boundaries on the parameter of
interest. https://arxiv.org/abs/1210.6948
Cowen, T. (2006). The epistemic problem does not
refute consequentialism. Utilitas,
18, 383–399. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=38f49ce2a860ac03be8bded707760bbb1c9f0f6b
Cowen, T. & Tabarrok, A. (2013a). Modern Priniciples:
Macroeconomics (2nd ed.). Worth Publishers.
———. (2013b). Modern Priniciples: Microeconomics
(2nd ed.). Worth Publishers.
Cox, D. R. (2006). Principles of Statistical
Inference. Cambridge University Press.
Cramer, J. G. (1986). The transactional
interpretation of quantum mechanics. Reviews of Modern
Physics, 58, 647.
Cramér, H. (1946). A contribution to the theory of
statistical estimation. Skandinavisk Aktuarietidskrift,
29, 85–94.
Cranmer, K. (2015). Practical statistics for the
LHC. https://arxiv.org/abs/1503.07622
Cranmer, K. et al. (2012). HistFactory: A tool for
creating statistical models for use with RooFit and RooStats.
Technical Report: CERN-OPEN-2012-016. http://inspirehep.net/record/1236448/
Cranmer, K., Brehmer, J., & Louppe, G. (2019). The frontier of simulation-based inference. https://arxiv.org/abs/1911.01429
Cranmer, K., Pavez, J., & Louppe, G. (2015). Approximating likelihood ratios with calibrated
discriminative classifiers. https://arxiv.org/abs/1506.02169
Cranmer, K., Seljak, U., & Terao, K. (2021). Machine learning. In P. A. Z. et al. (Ed.),
Progress of Theoretical and Experimental
Physics. 2020, 083C01. (and 2021 update). https://pdg.lbl.gov/2021-rev/2021/reviews/contents_sports.html
Cranmer, M. et al. (2020). Discovering symbolic
models from deep learning with inductive biases. https://arxiv.org/abs/2006.11287
Creath, R. (2012). Rudolf Carnap and the Legacy
of Logical Empiricism. Springer.
———. (2017a). Logical empiricism.
Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/logical-empiricism/
———. (2017b). The logical and the analytic.
Synthese, 194, 79–96. https://link.springer.com/article/10.1007/s11229-015-0685-5
———. (2023). What was Carnap rejecting when he
rejected metaphysics? In From Biological
Practice to Scientific Metaphysics. University of
Minnesota Press. https://manifold.umn.edu/read/from-biological-practice-to-scientific-metaphysics/section/0d271498-1f37-49d7-8bf5-3268cb77b4a0
Cubitt, T., Perez-Garcia, D., & Wolf, M. (2015). Undecidability of the spectral gap.
Nature, 528, 207–211.
Cushman, F. (2013). Action, outcome, and
value. Personality and Social Psychology Review,
17, 273–292.
D’Agnolo, R. T. & Wulzer, A. (2019). Learning
New Physics from a Machine. Physical Review D,
99, 015014. https://arxiv.org/abs/1806.02350
d’Espagnat, B. (1979). The quantum theory and
reality. Scientific American, 241,
158–181. https://static.scientificamerican.com/sciam/assets/media/pdf/197911_0158.pdf
———. (1999). Conceptual Foundations of Quantum
Mechanics. Westview Press.
Daitz, E. (1953). The picture theory of
meaning. Mind, 62, 184–201. https://www.jstor.org/stable/2251383
Dang, H. & Bright, L. K. (2021). How to make
sense of contradictory science papers. Nautilus. June 2,
2021. https://nautil.us/issue/100/outsiders/how-to-make-sense-of-contradictory-science-papers
Dao, T. et al. (2022). FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. https://arxiv.org/abs/2205.14135
Dao, T. & Gu, A. (2024). Transformers are SSMs:
Generalized models and efficient algorithms through structured state
space duality. https://arxiv.org/abs/2405.21060
Dar, Y., Muthukumar, V., & Baraniuk, R. G. (2021). A farewell to the bias-variance tradeoff? An
overview of the theory of overparameterized machine learning. https://arxiv.org/abs/2109.02355
Das, S. & Dürr, D. (2019). Arrival time
distributions of spin-1/2 particles. Scientific Reports,
9, 2242. https://www.nature.com/articles/s41598-018-38261-4
Davidson, D. (1982). Rational animals.
Dialectica, 36, 317–327.
Davis, N. (2015). To Explain the World
review. The Guardian. February 21, 2015. https://www.theguardian.com/books/2015/feb/22/to-explain-the-world-steven-weinberg-history-great-thinkers
Dawid, A. P. (2014). Discussion of "On the Birnbaum
Argument for the Strong Likelihood Principle". Statistical
Science, 29, 240–241. https://projecteuclid.org/journals/statistical-science/volume-29/issue-2/Discussion-of-On-the-Birnbaum-Argument-for-the-Strong-Likelihood/10.1214/14-STS470.full
de Carvalho, M., Page, G. L., & Barney, B. J. (2019). On the geometry of Bayesian inference.
Bayesian Analysis, 14, 1013–1036. https://projecteuclid.org/journals/bayesian-analysis/volume-14/issue-4/On-the-Geometry-of-Bayesian-Inference/10.1214/18-BA1112.full
De Cruz, H. (2016). Numerical cognition and
mathematical realism. Philosopher’s Imprint,
16, 1–13. http://hdl.handle.net/2027/spo.3521354.0016.016
de la Madrid, R. (2005). The role of the rigged
Hilbert space in quantum mechanics. https://arxiv.org/abs/quant-ph/0502053
de Queiroz, A., Lachieze-Rey, M., & Simon, S. (2014). Symmetry, physical theories and theory change.
Frontiers of Fundamental Physics, 14,
210. https://ui.adsabs.harvard.edu/abs/2014ffp..confE.210D/abstract
de Swart, H. (2018). Philosophical and
Mathematical Logic. Springer.
de Waal, F. (1982). Chimpanzee Politics: Power
and Sex among Apes. Johns Hopkins University
Press.
Debono, I. & Smoot, G. F. (2016). General
relativity and cosmology: Unsolved questions and future
directions. Universe, 2, 23. https://arxiv.org/abs/1609.09781
Degorre, J., Laplante, S., & Roland, J. (2005). Simulating quantum correlations as a distributed sampling
problem. https://arxiv.org/abs/quant-ph/0507120
Del Santo, F. & Krizek, G. K. (2023). Against
the "nightmare of a mechanically determined universe": Why Bohm was
never a Bohmian. https://arxiv.org/abs/2307.05611
Del Santo, F. & Schwarzhans, E. (2022). "Philosophysics" at the University of Vienna: The
(Pre-)history of foundations of quantum physics in the Viennese cultural
context. Physics in Perspective,
24, 125–153. https://link.springer.com/article/10.1007/s00016-022-00290-y
Deligne, P. (1999). Notes on spinors. In
Quantum Fields and Strings: A Course for
Mathematicians, Vol. 1 (pp. 99–136). American
Mathematical Society. https://publications.ias.edu/sites/default/files/79_NotesOnSpinors.pdf
———. (2002). Catégories
Tensorielles. Moscow Mathematical Journal,
2, 227–248. https://www.math.ias.edu/files/deligne/Tensorielles.pdf
Denby, B. (1988). Neural networks and cellular
automata in experimental high energy physics. Computer
Physics Communications, 49, 429–448. https://inis.iaea.org/collection/NCLCollectionStore/_Public/20/013/20013339.pdf
———. (1993). The use of neural networks in
high-energy physics. Neural Computation,
5, 505–549. https://lss.fnal.gov/archive/1992/pub/Pub-92-215-E.pdf
Dennett, D. C. (1991a). Consciousness Explained.
Hachette Book Group.
———. (1991b). Real patterns. The Journal
of Philosophy, 88, 27–51. https://web.ics.purdue.edu/~drkelly/DCDRealPatterns1991.pdf
———. (1995). Darwin’s Dangerous Idea: Evolution
and the meanings of life. Simon & Schuster.
———. (2006a). Breaking the Spell: Religion as a
natural phenomenon. Penguin.
———. (2006b). Higher-order truths about
chmess. Topoi, 25, 39–41.
———. (2012). The mystery of David Chalmers.
Journal of Consciousness Studies, 19,
86–95. https://web.archive.org/web/20230226072833/https://ase.tufts.edu/cogstud/dennett/papers/chalmers.pdf
———. (2016). Illusionism as the obvious default
theory of consciousness. Journal of Consciousness
Studies, 23, 65–72. https://web.archive.org/web/20210224112608/https://ase.tufts.edu/cogstud/dennett/papers/illusionism.pdf
Descartes, R. (1982). Principles of
Philosophy. (V. R. Miller & R. P. Miller, Trans.).
Kluwer Academic Publishers. (Originally published in 1644
as Principia Philosophiæ).
———. (1996). Oeuvres de Descartes, 11
volumes. (C. Adam & P. Tannery, Eds.). Paris:
Vrin. http://philosophyfaculty.ucsd.edu/faculty/ctolley/texts/descartes.html
———. (2008). Meditations on First
Philosophy. (M. Moriarty, Trans.). Oxford University
Press. (Originally published in 1641).
Dettmers, T., Pagnoni, A., Holtzman, A., & Zettlemoyer, L. (2023).
QLoRA: Efficient finetuning of quantized
LLMs. https://arxiv.org/abs/2305.14314
Deutsch, D. (1985). Quantum theory as a universal
physical theory. International Journal of Theoretical
Physics, 24, 1–41.
Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for
language understanding. https://arxiv.org/abs/1810.04805
Dewar, N. (2019). Sophistication about
symmetries. British Journal for the Philosophy of
Science, 70, 485–521.
Dewey, J. (1938). Logic: The Theory of
Inquiry. New York: Henry Holt and Co.
DeWitt, B. S. (1970). Quantum mechanics and
reality. Physics Today, 23, 30–35.
https://physicstoday.scitation.org/doi/10.1063/1.3022331
DeWitt, B. S. & Graham, N. (1973). The
Many-Worlds Interpretation of Quantum Mechanics.
Princeton University Press.
Dhariwal, P. & Nichol, A. (2021). Diffusion
models beat GANs on image synthesis. https://arxiv.org/abs/2105.05233
Diamond, J. & Bellwood, P. (2003). Farmers and
their languages: the first expansions. Science,
300, 597–603. https://science.sciencemag.org/content/300/5619/597
Dicker, G. (1991). Hume’s fork revisited.
History of Philosophy Quarterly, 8,
327–342.
Dieleman, S., Fauw, J. D., & Kavukcuoglu, K. (2016). Exploiting cyclic symmetry in convolutional neural
networks. https://arxiv.org/abs/1602.02660
Diener, E. (2019). Happiness: the science of
subjective well-being. http://noba.to/qnw7g32t
Dietrich, E. (2011). There is no progress in
philosophy. Essays in Philosophy,
12, 9. https://philarchive.org/rec/DIETIN
Dimopoulos, S. & Georgi, H. (1981). Softly
broken supersymmetry and SU(5). Nuclear Physics B,
193, 150–162.
Dinan, E., Yaida, S., & Zhang, S. (2023). Effective theory of transformers at
initialization. https://arxiv.org/abs/2304.02034
Dine, M. & Kusenko, A. (2004). The origin of
the matter-antimatter asymmetry. Reviews of Modern
Physics, 76, 1–30. https://arxiv.org/abs/hep-ph/0303065
Dirac, P. A. M. (1963). The evolution of the
physicist’s picture of nature. Scientific American,
208, 45–53. https://www.jstor.org/stable/24936146
Donadi, S. & Hossenfelder, S. (2022). A toy
model for local and deterministic wave-function collapse.
Physical Review A, 106, 022212. https://arxiv.org/abs/2010.01327
Doob, J. L. (1935). The limiting distributions of
certain statistics. Annals of Mathematical Statistics,
6, 160–169. https://www.jstor.org/stable/2957546
Dosovitskiy, A. et al. (2020). An image is worth
16x16 words: Transformers for image recognition at scale. https://arxiv.org/abs/2010.11929
Douven, I. (2011). Abduction. Stanford Encyclopedia of
Philosophy. http://plato.stanford.edu/entries/abduction/
Doyle, A. C. (1890). The Sign of the
Four.
Drake, S. (1957). Discoveries and Opinions of
Galileo. New York: Doubleday and Co.
Dreyfus, H. L. (1965). Alchemy and artificial
intelligence. RAND Corporation. https://www.rand.org/pubs/papers/P3244.html
———. (1972). What Computers Can’t
Do. MIT Press.
Drossel, B. (2015). On the relation between the
second law of thermodynamics and classical and quantum mechanics.
In B. Falkenburg & M. Morrison (Eds.), Why
More is Different: Philosophical issues in condensed matter physics and
complex systems (pp. 41–54). Springer.
Duff, M. J., Okun, L. B., & Veneziano, G. (2001). Trialogue on the number of fundamental constants.
https://arxiv.org/abs/physics/0110060
Duncan, A. (2012). Conceptual Framework of
Quantum Field Theory. Oxford University Press.
Dürr, D. et al. (2014). Can Bohmian mechanics be
made relativistic? Proceedings of the Royal Society A,
470, 20130699. https://royalsocietypublishing.org/doi/full/10.1098/rspa.2013.0699
Dürr, D., Goldstein, S., Tumulka, R., & Zanghì, N. (2004). Bohmian mechanics and quantum field theory.
Physical Review Letters, 93, 090402. https://arxiv.org/abs/quant-ph/0303156
———. (2005). Bell-type quantum field
theories. Journal of Physics A,
38, R1. https://arxiv.org/abs/quant-ph/0407116
Dürr, D., Goldstein, S., & Zanghì, N. (1995). Bohmian mechanics as the foundation of quantum
mechanics. https://arxiv.org/abs/quant-ph/9511016
———. (2013). Quantum Physics Without Quantum
Philosophy. Springer.
Dürr, D. & Lazarovici, D. (2020). Understanding Quantum Mechanics: The World According to
Modern Quantum Foundations. Springer.
Dutailly, J. C. (2014). Particles and
Fields. https://hal.archives-ouvertes.fr/hal-00933043
Dwyer, P. S. (1967). Some applications of matrix
derivatives in multivariate analysis. Journal of the American
Statistical Association, 62, 607–625. https://www.tandfonline.com/doi/abs/10.1080/01621459.1967.10482934
Dyson, F. J. (1949). The S matrix in quantum
electrodynamics. Physical Review,
75, 1736.
———. (1952). Divergence of perturbation theory in
quantum electrodynamics. Physical Review,
85, 631.
Earman, J. (2000). Hume’s Abject Failure: The
argument against miracles. Oxford University
Press.
Earman, J. & Fraser, D. (2006). Haag’s theorem
and its implications for the foundations of quantum field theory.
Erkenntnis, 64, 305–344.
Earnshaw, E. (2017). How I solved Hume’s problem
and why nobody will believe me. Philosophy Now. https://philosophynow.org/issues/119/How_I_Solved_Humes_Problem_and_Why_Nobody_Will_Believe_Me
Ebbs, G. (2017). Carnap, Quine, and Putnam on
Methods of Inquiry. Cambridge University Press.
Edelman, B. L., Goel, S., Kakade, S., & Zhang, C. (2021). Inductive biases and variable creation in self-attention
mechanisms. https://arxiv.org/abs/2110.10090
Edmonds, D. (2020). The Murder of Professor
Schlick: The Rise and Fall of the Vienna Circle.
Princeton University Press.
Edwards, A. W. F. (1974). The history of
likelihood. International Statistical Review,
42, 9–15.
Eells, E. (1988). On the alleged impossibility of
inductive probability. The British Journal for the Philosophy
of Science, 39, 111–116. https://fitelson.org/probability/eells_pm.pdf
Efron, B. & Hastie, T. (2016). Computer Age
Statistical Inference: Algorithms, evidence, and data
science. Cambridge University Press.
Eilenberg, S. & MacLane, S. (1945). General
theory of natural equivalences. . Transactions of the
American Mathematical Society, 58, 231–294.
https://www.ams.org/journals/tran/1945-058-00/S0002-9947-1945-0013131-6/S0002-9947-1945-0013131-6.pdf
Eilenberger, W. (2020). Time of the Magicians:
Wittgenstein, Benjamin, Cassirer, Heidegger, and the decade that
reinvented philosophy. Penguin Press.
Einstein, A. (1905a). Ist die trägheit eines körpers
von seinem energieinhalt abhängig?
Annalen Der Physik, 323, 639–641. https://onlinelibrary.wiley.com/doi/10.1002/andp.19053231314
———. (1905b). Über die von der
molekularkinetischen theorie der wärme
geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen.
Annalen Der Physik, 322, 549–560. https://onlinelibrary.wiley.com/doi/10.1002/andp.19053220806
———. (1905c). Über einen die erzeugung
und verwandlung des lichtes betreffenden heuristischen
gesichtspunkt. Annalen Der Physik,
322, 132–148. https://onlinelibrary.wiley.com/doi/10.1002/andp.19053220607
———. (1905d). Zur elektrodynamik bewegter körper. Annalen Der Physik,
322, 891–921. (On the electrodynamics of moving
bodies). https://www.physics.umd.edu/courses/Phys606/spring_2011/einstein_electrodynamics_of_moving_bodies.pdf
———. (1922). Geometry and Experience.
London: Methuen & Co. Address given to the Prussian
Academy of Sciences on January 27, 1921. http://www-history.mcs.st-andrews.ac.uk/Extras/Einstein_geometry.html
Einstein, A. & Grossmann, M. (1913). Entwurf
einer verallgemeinerten relativitätstheorie
und einer theorie der gravitation (Outline of a generalized theory of
relativity and of a theory of gravitation). Zeitschrift
für Mathematik Und Physik, 62,
225–261. http://www.icra.it/MG/doc/Einstein_Entwurf_1913.pdf
Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be
considered complete? Physical Review,
47, 777–780. https://journals.aps.org/pr/abstract/10.1103/PhysRev.47.777
Elhage, N. et al. (2022). Toy models of
superposition. https://transformer-circuits.pub/2022/toy_model/index.html
Enderton, H. B. (2009). Second-order and
higher-order logic. Stanford Encyclopedia of Philosophy.
https://plato.stanford.edu/archives/sum2019/entries/logic-higher-order/
Englert, F. & Brout, R. (1964). Broken symmetry
and the mass of gauge vector mesons. Physical Review
Letters, 13, 321–323. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.13.321
Epictetus. (2014). Discourses, Fragments,
Handbook. (R. Hard, Trans.). Oxford University
Press. (Originally recorded by pupil Arrian of Nicomedia c. 108
CE).
Epstein, H. & Glaser, V. (1973). The role of
locality in perturbation theory. Annales de l’institut Henri
Poincaré: Section A, 19, 211. http://www.numdam.org/item/?id=AIHPA_1973__19_3_211_0
Esfeld, M., Lazarovici, D., Lam, V., & Hubert, M. (2017). The physics and metaphysics of primitive stuff.
The British Journal for the Philosophy of Science,
68, 133–161.
Evans, M. (2013). What does the proof of Birnbaum’s
theorem prove? https://arxiv.org/abs/1302.5468
Everett, H. (1956). Theory of the Universal
Wave Function. Princeton University. (Ph.D.
thesis. Reprinted in Barrett & Byrne (2012).).
———. (1957). "Relative state" formulation of
quantum mechanics. Reviews Modern Physics,
29, 454–462.
———. (2012). The Everett Interpretation of
Quantum Mechanics: Collected Works 1955-1980 with
Commentary. (J. A. Barrett & P. Byrne, Eds.).
Princeton University Press.
Ewald, W. (2018). The emergence of first-order
logic. Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/entries/logic-firstorder-emergence/
Fang, Z. et al. (2022). Is out-of-distribution
detection learnable? NeurIPS 2022. https://arxiv.org/abs/2210.14707
Fefferman, C., Mitter, S., & Narayanan, H. (2016). Testing the manifold hypothesis. Journal of
the American Mathematical Society, 29,
983–1049. https://www.ams.org/journals/jams/2016-29-04/S0894-0347-2016-00852-4/S0894-0347-2016-00852-4.pdf
Feigl, H. (1950). Existential hypotheses: Realistic
versus phenomenalistic interpretations. Philosophy of
Science, 17, 35–62.
———. (1956). Some major issues and developments in
the philosophy of science of logical empiricism. In H. Feigl
& M. Scriven (Eds.), The Foundations of
Science and the Concepts of Psychology and Psychoanalysis
(pp. 3–37). Minneapolis: University of Minnesota Press.
———. (1958). Critique of intuition according to
scientific empiricism. Philosophy East and West,
8, 1.
———. (1981). The origin and spirit of logical
positivism. Inquiries and Provocations,
21.
Feldman, G. J. & Cousins, R. D. (1998). A
unified approach to the classical statistical analysis of small
signals. Physical Review D, 57,
3873. https://arxiv.org/abs/physics/9711021
Fetzer, J. (2017). Carl Hempel. Stanford Encyclopedia
of Philosophy. https://plato.stanford.edu/entries/hempel
Feyerabend, P. (1974). Against Method.
Verso.
Feynman, R. P. (1959). There’s plenty of room at
the bottom. https://calteches.library.caltech.edu/1976/1/1960Bottom.pdf
———. (1963). The Feynman Lectures on Physics,
Volume I. California Institute of Technology.
http://www.feynmanlectures.caltech.edu/I_03.html
———. (1965). The development of the space-time view
of quantum electrodynamics. Nobel Lecture, December 11, 1965. https://www.nobelprize.org/prizes/physics/1965/feynman/lecture/
———. (1998). The Meaning of It All.
Addison-Wesley.
———. (1999). The Pleasure of Finding Things
Out. Basic Books.
Feynman, R. P. & Hibbs, A. R. (1965). Quantum Mechanics and Path Integrals.
Dover. Emended edition (2005).
Field, H. (1974). Theory change and the
indeterminacy of reference. The Journal of Philosophy,
70, 462–481.
———. (1989). Realism, Mathematics, and
Modality. Oxford: Blackwell.
———. (2016). Science Without Numbers (2nd ed.).
Oxford University Press. (Originally published in 1980 by
Princeton University Press).
Fienberg, S. E. (2006). When did Bayesian inference
become "Bayesian"? Bayesian Analysis,
1, 1–40. https://projecteuclid.org/journals/bayesian-analysis/volume-1/issue-1/When-did-Bayesian-inference-become-Bayesian/10.1214/06-BA101.full
Finzi, M. et al. (2025). Compute-optimal LLMs
provably generalize better with scale. https://arxiv.org/abs/2504.15208
Firth, J. R. (1957). A synopsis of linguistic
theory, 1930-1955. In Studies in
Linguistic Analysis (pp. 1–31). Oxford:
Blackwell.
Fisher, R. A. (1912). On an absolute criterion for
fitting frequency curves. Statistical Science,
12, 39–41.
———. (1915). Frequency distribution of the values
of the correlation coefficient in samples of indefinitely large
population. Biometrika, 10,
507–521.
———. (1921). On the "probable error" of a
coefficient of correlation deduced from a small sample.
Metron, 1, 1–32.
———. (1935). The Design of
Experiments. Hafner.
———. (1955). Statistical methods and scientific
induction. Journal of the Royal Statistical Society, Series
B, 17, 69–78.
Fleming, G. N. (2000). Reeh-Schlieder meets
Newton-Wigner. Philosophy of Science,
67, S495–S515. https://www.jstor.org/stable/188690
Fodor, J. A. (1974). Special sciences (Or: The
disunity of science as a working hypothesis). Synthese,
28, 97–115.
———. (1975). The Language of
Thought. Harvard University Press.
Fodor, J. A. & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A critical
analysis. Cognition, 28, 3–71.
Fong, B. & Spivak, D. I. (2018). Seven sketches
in compositionality: An invitation to applied category theory. https://arxiv.org/abs/1803.05316
Fowler, S. (2010). LSL in a nutshell. https://philarchive.org/archive/FOWLIA
Frankel, T. (1997). The Geometry of Physics: An
Introduction. Cambridge University Press.
———. (2004). The Geometry of
Physics (2nd ed.). Cambridge University Press.
Frankish, K. (2016). Illusionism as a theory of
consciousness. Journal of Consciousness Studies,
23, 11–39. https://keithfrankish.github.io/articles/Frankish_Illusionism%20as%20a%20theory%20of%20consciousness_eprint.pdf
Frankle, J. & Carbin, M. (2018). The lottery
ticket hypothesis: Finding sparse, trainable neural networks. https://arxiv.org/abs/1803.03635
Franzén, T. (2005). Gödel’s Theorem: An incomplete guide to its use and
abuse. A K Peters.
Fraser, C. (2020). Mohism. Stanford Encyclopedia of
Philosophy. https://plato.stanford.edu/entries/mohism/
Fraser, D. (2008). The fate of ’particles’ in
quantum field theories with interactions. Studies in History
and Philosophy of Science Part B: Studies in History and Philosophy of
Modern Physics, 39, 841–859. http://philsci-archive.pitt.edu/4038/
———. (2011). How to take particle physics
seriously: A further defence of axiomatic quantum field theory.
Studies in History and Philosophy of Modern Physics,
42, 126–135.
Fraser, J. D. (2018). Renormalization and the
formulation of scientific realism. Philosophy of
Science, 85, 1164–1175. https://philsci-archive.pitt.edu/14049/1/rgrealism_preprint.pdf
———. (2021). The twin origins of renormalization
group concepts. Studies in History and Philosophy of Science
Part A, 89, 114–128. https://durham-repository.worktribe.com/preview/1218769/34961.pdf
Frauchiger, D. & Renner, R. (2018). Quantum
theory cannot consistently describe the use of itself. Nature
Communications.
Frè, P. G. (2013a). Gravity, a Geometrical
Course, Volume 1: Development of the Theory and Basic Physical
Applications. Springer.
———. (2013b). Gravity, a Geometrical Course,
Volume 2: Black Holes, Cosmology and Introduction to
Supergravity. Springer.
Fréchet, M. (1943). Sur l’extension de certaines
évaluations statistiques au cas de petits échantillons. Revue
de l’Institut International de Statistique,
11, 182–205.
Freed, D. S. (2001). Dirac charge quantization and
generalized differential cohomology. https://arxiv.org/abs/hep-th/0011220
Freed, D. S. & Moore, G. W. (2012). Twisted
equivariant matter. https://arxiv.org/abs/1208.5055
Freedman, D. Z., Nieuwenhuizen, P. van, & Ferrara, S. (1976). Progress toward a theory of supergravity.
Physical Review D, 13, 3214–3218.
French, C. F. (2015). Philosophy as Conceptual
Engineering: Inductive Logic in Rudolf Carnap’s Scientific
Philosophy. (Ph.D. thesis). https://web.archive.org/web/20170810180750id_/https://philpapers.org/archive/FREPAC-7.pdf
French, S. (2007). Science: Key Concepts in
Philosophy. London: Continuum.
Frenkel, E. (2005). Lectures on the Langlands
program and conformal field theory. https://arxiv.org/abs/hep-th/0512172
Freund, Y. & Schapire, R. E. (1997). A
decision-theoretic generalization of on-line learning and an application
to boosting. Journal of Computer and System Sciences,
55, 119–139. https://doi.org/10.1006/jcss.1997.1504
Friedman, M. (1999). Reconsidering Logical
Positivism. Cambridge University Press.
———. (2000). A Parting of the Ways: Carnap,
Cassirer, and Heidegger. Open Court Publishing.
———. (2002). Carnap, Cassirer, and Heidegger: The
Davos disputation and twentieth century philosophy. European
Journal of Philosophy, 10, 263–274.
Friedman, M. & Creath, R. (2007). The
Cambridge Companion to Carnap. Cambridge University
Press.
Friedrich, B. (2016). How did the tree of knowledge
get its blossom? The rise of physical and theoretical chemistry, with an
eye on Berlin and Leipzig. Angewandte,
55, 5378–5392. https://onlinelibrary.wiley.com/doi/10.1002/anie.201509260
Frigg, R. & Hartmann, S. (2020). Models in
science. Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/entries/models-science/
Frigg, R. & Nguyen, J. (2017). Models and
representation. In Springer Handbook of
Model-Based Science (pp. 49–102). Springer.
Frigg, R. & Votsis, I. (2011). Everything you
always wanted to know about structural realism but were afraid to
ask. European Journal for Philosophy of Science,
1, 227–276.
Friston, K. (2010). The free-energy principle: a
unified brain theory? Nature Reviews: Neuroscience,
11, 127–138. https://www.uab.edu/medicine/cinl/images/KFriston_FreeEnergy_BrainTheory.pdf
Fronsdal, G. (2001). The Issue at Hand: Essays
on Buddhist Mindfulness Practice (4th ed.). https://www.insightmeditationcenter.org/wp-content/uploads/documents/iah/IssueAtHand4thEd.pdf
Frost-Arnold, G. (2013). Carnap, Tarski, and
Quine at Harvard: Conversations on Logic, Mathematics, and
Science. Open Court.
Fuchs, C. A. (2002). Quantum mechanics as quantum
information (and only a little more). https://arxiv.org/abs/quant-ph/0205039
———. (2010). QBism, the perimeter of quantum
Bayesianism. https://arxiv.org/abs/1003.5209
Fuchs, C. A., Mermin, N. D., & Schack, R. (2014). An introduction to QBism with an application to the
locality of quantum mechanics. American Journal of
Physics, 82, 749–754. https://arxiv.org/abs/1311.5253
Fuchs, C. A. & Schack, R. (2013). Quantum-Bayesian coherence: The no-nonsense
version. Reviews of Modern Physics,
85, 1693–1715. https://arxiv.org/abs/1301.3274
Fuchs, C. A. & Stacey, B. C. (2016). QBism:
Quantum theory as a hero’s handbook. https://arxiv.org/abs/1612.07308
Fuchs, F. B., Worrall, D. E., Fischer, V., & Welling, M. (2020).
SE(3)-Transformers: 3D roto-translation equivariant
attention networks. https://arxiv.org/abs/2006.10503
Fukushima, K. & Miyake, S. (1982). Neocognitron: A new algorithm for pattern recognition
tolerant of deformations and shifts in position. Pattern
Recognition, 15, 455–469.
Gabriel, G. (2003). Carnap’s "Elimination of
metaphysics through logical analysis of language". In Logical Empiricism: Historical and contemporary
perspectives (pp. 30–42). University of Pittsburgh
Press.
Gabriel, I. et al. (2024). The ethics of advanced
AI assistants. https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/ethics-of-advanced-ai-assistants/the-ethics-of-advanced-ai-assistants-2024-i.pdf
Gamba, M., Englesson, E., Björkman, M., & Azizpour, H. (2022). Deep double descent via smooth interpolation. https://arxiv.org/abs/2209.10080
Gammerman, A., Vovk, V., & Vapnik, V. (1998). Learning by transduction. Uncertainty in
Artificial Intelligence, 14, 148–155. https://arxiv.org/abs/1301.7375
Gandenberger, G. (2015). A new proof of the
likelihood principle. British Journal for the Philosophy of
Science, 66, 475–503. https://www.journals.uchicago.edu/doi/abs/10.1093/bjps/axt039
———. (2016). Why I am not a likelihoodist.
Philosopher’s Imprint, 16, 1–22. https://quod.lib.umich.edu/p/phimp/3521354.0016.007/--why-i-am-not-a-likelihoodist
Gao, Y. & Chaudhari, P. (2020). An
information-geometric distance on the space of tasks. https://arxiv.org/abs/2011.00613
Gardner, M. W. & Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron)–a
review of applications in the atmospheric sciences.
Atmospheric Environment, 32, 2627–2636.
Garfield, J. L. & Van Norden, B. W. (2016). If
philosophy won’t diversify, let’s call it what it really is.
New York Times Opinion. May 11, 2016. https://www.nytimes.com/2016/05/11/opinion/if-philosophy-wont-diversify-lets-call-it-what-it-really-is.html
Gaskin, R. (2009). Realism and the picture theory
of meaning. Philosophical Topics,
37, 49–62. https://www.jstor.org/stable/43154543
Geanakoplos, J. D. & Polemarchakis, H. M. (1982). We can’t disagree forever. Journal of Economic
Theory, 28, 192–200.
Gefter, A. & Hoffman, D. D. (2016). The case
against reality. The Atlantic. April 25, 2016. https://www.theatlantic.com/science/archive/2016/04/the-illusion-of-reality/479559/
Geiko, R. & Moore, G. W. (2020). Dyson’s
classification and real division superalgebras. https://arxiv.org/abs/2010.01675
Gell-Mann, M. (1988). Simplicity and complexity in
the description of nature. Engineering and Science,
51, 2–9. https://calteches.library.caltech.edu/53/2/Mann.pdf
Gell-Mann, M. & Hartle, J. B. (1989). Quantum
mechanics in the light of quantum cosmology. In Proceedings of the Santa Fe Institute Workshop on
Complexity, Entropy, and the Physics of Information.
Addison-Wesley. https://arxiv.org/abs/1803.04605
Gell-Mann, M. & Low, F. (1951). Bound states in
quantum field theory. Physical Review,
84, 350–354.
Gelman, A. & Hennig, C. (2017). Beyond
subjective and objective in statistics. Journal of the Royal
Statistical Society: Series A (Statistics in Society),
180, 967–1033.
Gelman, A. & Vehtari, A. (2021). What are the
most important statistical ideas of the past 50 years?
Journal of the American Statistical Association,
116, 2087–2097. https://www.tandfonline.com/doi/full/10.1080/01621459.2021.1938081
Georgi, H. (1999). Lie Algebras in Particle
Physics (2nd ed.). Westview Press. (Originally
published in 1982).
Georgi, H. & Glashow, S. L. (1974). Unity of
all elementary-particle forces. Physical Review Letters,
32, 438–441. http://pcbat1.mi.infn.it/~battist/astrop/su5.pdf
Georgi, H., Quinn, H. R., & Weinberg, S. (1974). Hierarchy of interactions in unified gauge
theories. Physical Review Letters,
33, 451.
Geshkovski, B., Letrouit, C., Polyanskiy, Y., & Rigollet, P. (2023).
A mathematical perspective on Transformers.
https://arxiv.org/abs/2312.10794
Gettier, E. L. (1963). Is justified true belief
knowledge? Analysis, 23, 121–3.
Ghirardi, G. C., Pearle, P., & Rimini, A. (1990). Markov processes in Hilbert space and continuous
spontaneous localization of systems of identical particles.
Physical Review A, 42, 78–89.
Ghirardi, G. C., Rimini, A., & Weber, T. and. (1986). Unified dynamics for microscopic and macroscopic
systems. Physical Review D, 34,
470–491.
Ghosh, N. & Belkin, M. (2022). A universal
trade-off between the model size, test loss, and training loss of linear
predictors. https://arxiv.org/abs/2207.11621
Gibson, R. (2014). Regret minimization in games
and the development of champion multiplayer computer poker-playing
agents. University of Alberta. (Ph.D. thesis).
https://era.library.ualberta.ca/items/15d28cbf-49d4-42e5-a9c9-fc55b1d816af/view/5ee708c7-6b8b-4b96-b1f5-23cdd95b6a46/Gibson_Richard_Spring-202014.pdf
Gill, T. L. (2017). The Feynman-Dyson view.
Journal of Physics: Conference Series,
845, 012023. https://iopscience.iop.org/article/10.1088/1742-6596/845/1/012023/pdf
Girard, J. Y. (1987). Linear logic.
Theoretical Computer Science, 50, 1–102.
http://girard.perso.math.cnrs.fr/linear.pdf
Gisin, N. (1991). Bell’s inequality holds for all
non-product states. Physics Letters A,
154, 201–202.
———. (1999). Bell inequality for arbitrary many
settings of the analyzers. Physics Letters A,
260, 1–3. https://arxiv.org/abs/quant-ph/9905062
———. (2020). Indeterminism in physics and
intuitionistic mathematics. https://arxiv.org/abs/2011.02348
Gisin, N. & Del Santo, F. (2023). Towards a
measurement theory in QFT: "Impossible" quantum measurements are
possible but not ideal. https://arxiv.org/abs/2311.13644
Gisin, N. & Peres, A. (1992). Maximal violation
of Bell’s inequality for arbitrarily large spin. Physics
Letters A, 162, 15–17.
Glashow, S. (1961). Partial symmetries of weak
interactions. Nuclear Physics, 22,
579–588.
Glick, D. (2016). The ontology of quantum field
theory: Structural realism vindicated? Studies in History and
Philosophy of Science Part A, 59, 78–86. https://philarchive.org/archive/GLITOO
Gödel, K. (1929). Über die
Vollständigkeit des Logikkalküls. University Of
Vienna. (Doctoral dissertation. The first proof of the
completeness theorem.).
———. (1931). Über formal
unentscheidbare Sätze der Principia
Mathematica und verwandter Systeme, I. Monatshefte
für Mathematik Und Physik, 38,
173–198.
———. (1995). Some basic theorems on the foundations
of mathematics and their implications. In S. Feferman (Ed.),
Kurt Gödel
Collected Works, Vol. III. (304–323). Oxford
University Press.
Goldenfeld, N. (1992). Lectures on Phase
Transitions and the Renormalization Group. Perseus
Books.
Goldfarb, W. (2005). On Gödel’s way in: The influence of Rudolf
Carnap. Bulletin of Symbolic Logic,
11, 185–193. https://www.jstor.org/stable/1556748
Goldman, A. H. (1993). Realism about aesthetic
properties. The Journal of Aesthetics and Art Criticism,
51, 31–37.
Goldreich, O. & Ron, D. (1997). On universal
learning algorithms. Information Processing Letters,
63, 131–136. https://www.wisdom.weizmann.ac.il/~oded/p_ul.html
Goldstein, R. (2005). Incompleteness: The Proof
and Paradox of Kurt Gödel.
Norton.
Golovneva, O., Wang, T., Weston, J., & Sukhbaatar, S. (2024). Contextual position encoding: Learning to count what’s
important. https://arxiv.org/abs/2405.18719
Good, I. J. (1965). Speculations concerning the
first ultraintelligent machine. Advances in Computers,
6, 31–88. https://blog.biocomm.ai/wp-content/uploads/2023/05/IJ-Good.-Speculations-Concerning-the-First-Ultraintelligent-Machine.pdf
———. (1988). The interface between statistics and
philosophy of science. Statistical Science,
3, 386–397.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep
Learning. MIT Press. http://www.deeplearningbook.org
Goodman, N. & Quine, W. V. O. (1947). Steps
toward a constructive nominalism. The Journal of Symbolic
Logic, 12, 105–122.
Goodman, S. N. (1999a). Toward evidence-based
medical statistics 1: The P value fallacy. Annals of Internal
Medicine, 130, 995–1004. https://courses.botany.wisc.edu/botany_940/06EvidEvol/papers/goodman1.pdf
———. (1999b). Toward evidence-based medical
statistics 2: The Bayes factor. Annals of Internal
Medicine, 130, 1005–1013. https://courses.botany.wisc.edu/botany_940/06EvidEvol/papers/goodman2.pdf
Gopakumar, R. (2011). What is the simplest
gauge-string duality? https://arxiv.org/abs/1104.2386
Gopakumar, R. & Mazenc, E. A. (2022). Deriving
the simplest gauge-string duality, I: Open-closed-open triality.
https://arxiv.org/abs/2212.05999
Gorard, S. & Gorard, J. (2016). What to do
instead of significance testing? Calculating the ’number of
counterfactual cases needed to disturb a finding’.
International Journal of Social Research Methodology,
19, 481–490.
Gould, S. J. (1965). Is uniformitarianism
necessary? American Journal of Science,
263, 223–228.
Goyal, P. (2020). Derivation of classical mechanics
in an energetic framework via conservation and relativity.
Foundations of Physics, 50, 1426–1479.
Graves, A. (2013). Generating sequences with
recurrent neural networks. https://arxiv.org/abs/1308.0850
Greaves, H. & Thomas, T. (2012). The CPT
theorem. https://arxiv.org/abs/1204.4674
Greaves, H. & Wallace, D. (2011). Empirical
consequences of symmetries. https://arxiv.org/abs/1111.4309
Greenberger, D., Horne, M. A., Shimony, A., & Zeilinger, A. (1990).
Bell’s theorem without inequalities.
American Journal of Physics, 58, 1131.
Greenberger, D., Horne, M. A., & Zeilinger, A. (1989). Going beyond Bell’s theorem. https://arxiv.org/abs/0712.0921
Greenblatt, S. (2011a). The answer man: An ancient
poem was rediscovered—and the world swerved. The New
Yorker. August 1, 2011. https://www.newyorker.com/magazine/2011/08/08/the-answer-man-stephen-greenblatt
———. (2011b). The Swerve: How the World Became
Modern. Norton.
Grice, H. P. & Strawson, P. F. (1956). In
defense of a dogma. The Philosophical Review,
65, 141–158.
Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do tree-based models still outperform deep learning
on tabular data? https://arxiv.org/abs/2207.08815
Gross, D. J. (1996). The role of symmetry in
fundamental physics. Proceedings of the National Academy of
Sciences, 93, 14256–14259. https://www.pnas.org/doi/pdf/10.1073/pnas.93.25.14256
Gross, P. (1994). Higher Superstition: The
Academic Left and Its Quarrels With Science. Johns
Hopkins University Press.
Grzankowski, A. (2015). Not all attitudes are
propositional. European Journal of Philosophy,
23, 374–391.
Gu, A. & Dao, T. (2023). Mamba: Linear-time
sequence modeling with selective state spaces. https://arxiv.org/abs/2312.00752
Gu, A., Goel, K., & Ré, C. (2021). Efficiently
modeling long sequences with structured state spaces. https://arxiv.org/abs/2111.00396
Guralnik, G. S., Hagen, C. R., & Kibble, T. W. B. (1964). Global conservation laws and massless particles.
Physical Review Letters, 13, 585–587. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.13.585
Gurnee, W. et al. (2023). Finding neurons in a
haystack: Case studies with sparse probing. https://arxiv.org/abs/2305.01610
Gurnee, W. & Tegmark, M. (2023). Language
models represent space and time. https://arxiv.org/abs/2310.02207
Guth, A. H. (1981). Inflationary universe: A
possible solution to the horizon and flatness problems.
Physical Review D, 23, 347–356. https://journals.aps.org/prd/abstract/10.1103/PhysRevD.23.347
———. (1997). Was cosmic inflation the ’bang’ of the
big bang? The Beamline, 27, 14. https://ned.ipac.caltech.edu/level5/Guth/Guth_contents.html
———. (2007). Eternal inflation and its
implications. Journal of Physics A,
40, 6811. https://arxiv.org/abs/hep-th/0702178
Guyer, P. & Horstmann, R. P. (2021). Idealism.
Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/entries/idealism/
———. (2023). Idealism in Modern
Philosophy. *Oxford University Press*.
Haack, S. (1996). We Pragmaticists: Peirce and
Rorty in conversation. Agora: Papeles de Filosofía,
15, 53–68. https://minerva.usc.es/xmlui/bitstream/handle/10347/1078/pg_057-072_agora15-1.pdf
———. (1997). Vulgar Rortyism. The New Criterion.
https://web.archive.org/web/20081211042858/http://www.newcriterion.com/articlepdf.cfm/rortyism-haack-3261
Haag, R. (1955). On quantum field theories.
Matematisk-Fysiske Meddelelser, 29, 1–37.
http://cds.cern.ch/record/212242
———. (1992). Local Quantum Physics: Fields, Particles,
Algebras. Springer.
Haag, R., Łopuszański, J. T., & Sohnius, M. (1975). All possible generators of supersymmetries of the
S-matrix. Nuclear Physics B, 88,
257–274.
Habara, K., Fukuda, E. H., & Yamashita, N. (2023). Convergence analysis and acceleration of the smoothing
methods for solving extensive-form games. https://arxiv.org/abs/2303.11046
Haber, E. et al. (2018). Learning across scales:
Multiscale methods for convolution neural networks. AAAI
Proceedings, 32, 3142–3148. https://cdn.aaai.org/ojs/11680/11680-13-15208-1-2-20201228.pdf
Haber, E. & Ruthotto, L. (2017). Stable
architectures for deep neural networks. https://arxiv.org/abs/1705.03341
Hacking, I. (1965). Logic of Statistical
Inference. Cambridge University Press.
———. (1971). Jacques Bernoulli’s Art of
conjecturing. The British Journal for the Philosophy of
Science, 22, 209–229.
———. (2001). An Introduction to Probability and
Inductive Logic. Cambridge University Press.
Hahn, H., Neurath, O., & Carnap, R. (1973). The
scientific conception of the world: The Vienna Circle. In M.
Neurath & R. S. Cohen (Eds.), Empiricism
and Sociology (pp. 298–318). Dordrecht: Reidel.
(Originally published in German in 1929 as “Wissenschaftliche
Weltauffassung: Der Wiener Kreis“). http://rreece.github.io/philosophy-reading-list/docs/the-scientific-conception-of-the-world-the-vienna-circle.pdf
Hall, B. C. (2000). An Elementary Introduction
to Groups and Representations. https://arxiv.org/abs/math-ph/0005032
Hall, M. J. W. (2010). Local deterministic model of
singlet state correlations based on relaxing measurement
independence. Physical Review Letters,
105, 250404. https://arxiv.org/abs/1007.5518
Halverson, J., Maiti, A., & Stoner, K. (2020). Neural networks and quantum field theory. https://arxiv.org/abs/2008.08601
Halvorson, H. (2019). To be a realist about quantum
theory. In O. Lombardi (Ed.), Quantum
Worlds: Perspectives on the Ontology of Quantum Mechanics.
https://philpapers.org/archive/HALSPO-6.pdf
Hamamatsu. (2007). Photomultiplier Tubes:
Basics and Applications (3rd ed.). Hamamatsu
Photonics. https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/etd/PMT_handbook_v3aE.pdf
Hamming, R. W. (1980). The unreasonable
effectiveness of mathematics. The American Mathematical
Monthly, 87, 81–90.
Hanley, J. A. & Lippman-Hand, A. (1983). If
nothing goes wrong, is everything all right?: Interpreting zero
numerators. JAMA, 249, 1743–1745.
Hanson, R., Martin, D., McCarter, C., & Paulson, J. (2021). If loud aliens explain human earliness, quiet aliens are
also rare. The Astrophysical Journal,
922, 182. https://iopscience.iop.org/article/10.3847/1538-4357/ac2369
Hansson, S. O. & Hendricks, V. F. (2018). Introduction to Formal Philosophy.
Springer.
Harding, S. (1986). The Science Question in
Feminism. Cornell University Press.
Harrigan, N. & Spekkens, R. W. (2010). Einstein, incompleteness, and the epistemic view of
quantum states. Foundations of Physics,
40, 125–157. https://arxiv.org/abs/0706.2661
Harris, S. (2010). The Moral Landscape: How
science can determine human values. Free Press.
———. (2014). Waking Up: A Guide to Spirituality
Without Religion. Simon & Schuster.
Hartigan, J. A. (1985). Statistical theory in
clustering. Journal of Classification,
2, 63–76. https://link.springer.com/article/10.1007/BF01908064
Harvey, P. (2013). An Introduction to
Buddhism (2nd ed.). Cambridge University Press.
Haslanger, S. (2000). Gender and Race: (What) Are
They? (What) Do We Want Them To Be? Nous,
34, 31–55. https://onlinelibrary.wiley.com/doi/10.1111/0029-4624.00201
———. (2012). Resisting Reality: Social
Construction and Social Critique. Oxford University
Press.
Hastie, T., Montanari, A., Rosset, S., & Tibshirani, R. J. (2022).
Surprises in high-dimensional ridgeless least
squares interpolation. Annals of Statistics,
50, 949. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481183/
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining,
Inference, and Prediction (2nd ed.). Springer.
Hayek, F. (1945). The use of knowledge in
society. The American Economic Review,
35, 519–530.
Hayes, R. P. (1988). Principled atheism in the
Buddhist scholastic tradition. Journal of Indian
Philosophy, 16, 5–28. https://link.springer.com/article/10.1007/BF00235404
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition. https://arxiv.org/abs/1512.03385
Healey, R. (2007). Gauging What’s
Real. Oxford University Press.
Heaviside, O. (1893). Electromagnetic Theory, Vol.
1. London: The Electrician.
Heer, J. (2017). America’s first postmodern
president. New Republic. July 8, 2017. https://newrepublic.com/article/143730/americas-first-postmodern-president
Heidegger, M. (1929). What is metaphysics?
Lecture at the U. of Freiburg. https://antilogicalism.com/wp-content/uploads/2017/07/what-is-metaphysics.pdf
———. (1966). Discourse on Thinking.
(J. M. Anderson & E. H. Freund, Trans.). New York: Harper
& Row. (Originally published in 1959 as
Gelassenheit).
Heilbron, J. L. (2013). The first Solvay council:
"A sort of private conference". In D. Gross, M. Henneaux, &
A. Servin (Eds.), The Theory of the Quantum
World: Proceedings of the 25th Solvay Conference on Physics
(pp. 1–16). World Scientific.
Heinrich, J. & Lyons, L. (2007). Systematic
errors. Annual Reviews of Nuclear and Particle Science,
57, 145–169. https://www.annualreviews.org/doi/abs/10.1146/annurev.nucl.57.090506.123052
Heinrich, J. & Silver, D. (2016). Deep
reinforcement learning from self-play in imperfect-information
games. https://arxiv.org/abs/1603.01121
Hempel, C. G. (1950). Problems and changes in the
empiricist criterion of meaning. Revue Internationale de
Philosophie, 4, 41–63.
———. (1974). Formulation and formalization of
scientific theories. In F. Suppe (Ed.), The Structure of Scientific Theories.
University of Illinois Press.
Hempel, C. G. & Oppenheim, P. (1948). Studies
in the logic of explanation. Philosophy of Science,
15, 135–175.
Hendricks, V. F. (2006). Mainstream and Formal
Epistemology. Cambridge University Press.
Henighan, T. et al. (2023). Superposition,
memorization, and double descent. https://transformer-circuits.pub/2023/toy-double-descent/index.html
Henkin, L. (1950). Completeness in the theory of
types. Journal of Symbolic Logic,
15, 81–91. https://doi.org/10.2307/2266967
———. (1953). Some notes on nominalism.
The Journal of Symbolic Logic, 18, 19–29.
https://doi.org/10.2307/2266323
———. (1996). The discovery of my completeness
proofs. Bulletin of Symbolic Logic,
2, 127–158. https://doi.org/10.2307/421107
Hennig, C. (2010). Mathematical models and reality:
A constructivist perspective. Foundations of Science,
15, 29–48.
———. (2015). What are the true clusters?
Pattern Recognition Letters, 64, 53–62.
https://arxiv.org/abs/1502.02555
Hestness, J. et al. (2017). Deep learning scaling
is predictable, empirically. https://arxiv.org/abs/1712.00409
Higgs, P. W. (1964). Broken symmetries, massless
particles and gauge fields. Physics Letters,
13, 508–509. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.13.508
Hilbert, D. (1926). Über das Unendliche.
Mathematische Annalen, 95, 161–190.
English translation, On the infinite, in van Heijenoort, J. (1967).
From Frege to Gödel: A Source Book in Mathematical Logic,
1897-1931, pp. 183–201. Harvard University Press. https://lawrencecpaulson.github.io/papers/on-the-infinite.pdf
———. (1967). The foundations of mathematics.
In J. van Heijenoort (Ed.), From Frege to
Gödel: A Source Book in Mathematical Logic, 1879-1931 (pp.
464–479). Harvard University Press. (From a lecture given
by Hilbert in 1927).
Hintikka, J. (1975). Rudolf Carnap, Logical
Empiricist. Dordrecht: Springer Netherlands.
———. (1999). Inquiry as Inquiry: A logic of
scientific discovery. Springer.
Hitchens, C. (2007). God is Not Great: How
religion poisons everything. Hachette Book
Group.
———. (2012). Mortality. Hachette Book
Group.
Hobson, J. M. (2004). The Eastern Origins of
Western Civlisation. Cambridge University
Press.
Hochreiter, S. & Schmidhuber, J. (1997). Long
short-term memory. Neural Computation,
9, 1735–1780.
Hodges, W. (1985). Truth in a structure.
Proceedings of the Aristotelian Society,
86, 135–151. Wiley.
https://www.jstor.org/stable/4545041.
———. (1997). A Shorter Model Theory.
Cambridge University Press.
Hoffmann, J. et al. (2022). Training
compute-optimal large language models. https://arxiv.org/abs/2203.15556
Holm, D. D. (2011a). Geometric Mechanics - Part I: Dynamics
And Symmetry (2nd ed.). Imperial College Press.
———. (2011b). Geometric Mechanics - Part II:
Rotating, Translating, and Rolling (2nd ed.). Imperial
College Press.
Holzmüller, D. (2020). On the universality of the
double descent peak in ridgeless regression. https://arxiv.org/abs/2010.01851
Horacek, M. (2022). Risk-Aversion in Algorithms
for Poker. https://is.muni.cz/th/ydbvx/thesis.pdf
Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal
approximators. Neural Networks, 2,
359–366. https://cognitivemedium.com/magic_paper/assets/Hornik.pdf
Hossenfelder, S. (2023). Quantum confusions,
cleared up (or so I hope). https://arxiv.org/abs/2309.12299
Hossenfelder, S. & Palmer, T. (2020). Rethinking superdeterminism. Frontiers in
Physics, 8, 139. https://www.frontiersin.org/articles/10.3389/fphy.2020.00139/full
Howard, A.G. et al. (2017). MobileNets: Efficient
convolutional neural networks for mobile vision applications. https://arxiv.org/abs/1704.04861
Howard, J. N., Mandt, S., Whiteson, D., & Yang, Y. (2021). Foundations of a fast, data-driven, machine-learned
simulator. https://arxiv.org/abs/2101.08944
Hu, E.J. et al. (2021). LoRA: Low-rank adaptation
of large language models. https://arxiv.org/abs/2106.09685
Huang, L. et al. (2020). Normalization techniques
in training DNNs: Methodology, analysis and application. https://arxiv.org/abs/2009.12836
Huber, F. (2007). Confirmation and
induction. Internet Encyclopedia of Philosophy. http://www.iep.utm.edu/conf-ind/
Hudson, H. (2016). Non-naturalistic
metaphysics. In K. J. Clark (Ed.), The
Blackwell Companion to Naturalism (pp. 168–181).
Wiley.
Huggett, N. & Weingard, R. (1995). The
renormalisation group and effective field theories.
Synthese, 102, 171–194.
Huh, M. et al. (2024). Training neural networks
from scratch with parallel low-rank adapters. https://arxiv.org/abs/2402.16828
Huh, M., Cheung, B., Wang, T., & Isola, P. (2024). The platonic representation hypothesis. https://arxiv.org/abs/2405.07987
Hume, D. (2007a). An Enquiry Concerning Human
Understanding. (P. Millican, Ed.). Oxford University
Press. (Originally published in 1748).
———. (2007b). The Natural History of
Religion. (T. Beauchamp, Ed.). Clarendon Press.
(Originally published in 1757).
———. (2009). A Treatise of Human
Nature. Floating Press. (Originally published
in 1740).
Hunter, G. (1971). Metalogic: An Introduction
to the Metatheory of Standard First-Order Logic.
University of California Press.
Hutchins, J. (2000). Yehoshua Bar-Hillel: A
philosophers’ contribution to machine translation.
Hutter, M. (2007). Universal Algorithmic
Intelligence: A mathematical top-down approach. In
Artificial General Intelligence (pp. 227–290).
Springer. http://www.hutter1.net/ai/aixigentle.htm
Huxley, A. (1945). The Perennial Philosophy.
Harper & Brothers.
Ichikawa, J. & Jenkins, C. (2017). On putting
knowledge ’first’. In J. A. Carter (Ed.), Knowledge First: Approaches in epistemology and
mind (pp. 113–130). Oxford University Press.
Ingrosso, A. & Goldt, S. (2022). Data-driven
emergence of convolutional structure in neural networks. https://arxiv.org/abs/2202.00565
Ioannidis, J. P. (2005). Why most published
research findings are false. PLOS Medicine,
2, 696–701.
Isaac, M. G. & Koch, S. (2022). Foundational
issues in conceptual engineering: Introduction and overview.
Inquiry, 0, 1–9. https://www.tandfonline.com/doi/full/10.1080/0020174X.2022.2028230
Ismael, J. (2023). Reflections on the asymmetry of
causation. Interface Focus, 13,
20220081. https://royalsocietypublishing.org/doi/pdf/10.1098/rsfs.2022.0081
Ismael, J. & Schaffer, J. (2020). Quantum
holism: Nonseparability as common ground. Synthese,
197, 4131–4160. https://link.springer.com/article/10.1007/s11229-016-1201-2
Ismailov, V. (2020). A three layer neural network
can represent any multivariate function. https://arxiv.org/abs/2012.03016
Jacobs, J. (2002). Naturalism. Internet Encyclopedia of
Philosophy. http://www.iep.utm.edu/naturali/
Jaeger, G. (2019). Are virtual particles less
real? Entropy, 21, 141. https://www.mdpi.com/1099-4300/21/2/141
Jamali, M. et al. (2024). Semantic encoding during
language comprehension at single-cell resolution.
Nature, 631, 610–616. https://www.nature.com/articles/s41586-024-07643-2
James, F. (2006). Statistical Methods in
Experimental Particle Physics (2nd ed.). World
Scientific.
James, F. & Roos, M. (1975). MINUIT: A system
for function minimization and analysis of the parameter errors and
corrections. Computational Physics Communications,
10, 343–367. https://cds.cern.ch/record/310399
James, W. & Stein, C. (1961). Estimation with
quadratic loss. In Proceedings of the
Fourth Berkeley Symposium on Mathematical Statistics and Probability,
Vol. 1 (pp. 361–379). University of California
Press. https://projecteuclid.org/accountAjax/Download?urlId=bsmsp%2F1200512173&downloadType=presschapter&isResultClick=True
Janaway, C. (1999). Schopenhauer’s
pessimism. Royal Institute of Philosophy Supplements,
44, 47–63.
Janyska, J., Modugno, M., & Vitolo, R. (2007). Semi-vector spaces and units of measurement. https://arxiv.org/abs/0710.1313
Javed, K. & Sutton, R. S. (2024). The big world
hypothesis and its ramifications for artificial intelligence. http://incompleteideas.net/papers/The_Big_World_Hypothesis.pdf
Jaynes, E. T. (2003). Probability Theory: The
Logic of Science. https://bayes.wustl.edu/etj/prob/book.pdf
Jenkins, C. (2014). Naturalism and norms of
inference. In A. Fairweather & O. Flanagan (Eds.),
Naturalizing Epistemic Virtue (pp. 53–69).
Cambridge University Press.
———. (2016). Epistemological naturalisms. In
K. Clark (Ed.), The Blackwell Companion to
Naturalism. Oxford: Blackwell.
Jerzak, E. (2009). Second-order logic, or: How I
learned to stop worrying and love the incompleteness theorems. http://www.math.uchicago.edu/~may/VIGRE/VIGRE2009/REUPapers/Jerzak.pdf
Jevons, W. S. (1873a). The philosophy of inductive
inference. Fortnightly Review, 14,
457–476. London: Chapman and Hall.
———. (1873b). The use of hypothesis.
Fortnightly Review, 14, 778–788. London:
Chapman and Hall.
Jiao, L. et al. (2024). AI meets physics: A
comprehensive survey. Artificial Intelligence Review,
57, 256. https://doi.org/10.1007/s10462-024-10874-4
Johanson, M. (2013). Measuring the size of large
no-limit poker games. https://arxiv.org/abs/1302.7008
———. (2016). Robust Strategies and
Counter-Strategies: From Superhuman to Optimal Play.
University of Alberta. (Ph.D. thesis). http://johanson.ca/publications/theses/2016-johanson-phd-thesis/2016-johanson-phd-thesis.pdf
Johanson, M. et al. (2012). Efficient Nash
equilibrium approximation through Monte Carlo counterfactual regret
minimization. Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS
2012), 2, 837–846. https://www.idi.ntnu.no/emner/it3105/materials/poker/monte-carlo-cfm-2012.pdf
Johanson, M., Waugh, K., Bowling, M., & Zinkevich, M. (2011). Accelerating best response calculation in large extensive
games. IJCAI 2011, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence,
11, 258–265. http://www.cs.cmu.edu/~kwaugh/publications/johanson11.pdf
Jones, W. (2013). The Works of Sir William
Jones. (L. Teignmouta, Ed.). Cambridge University
Press.
Joos, E. et al. (2003). Decoherence and the
Appearance of a Classical World in Quantum Theory (2nd ed.).
Springer. (Originally published in 1996).
Joos, E. & Zeh, H. D. (1985). The emergence of
classical properties through interaction with the environment.
Zeitschrift für Physik B Condensed Matter,
59, 223–243. http://www.decoherence.de/J+Z.pdf
Jordan, P., Neumann, J. von, & Wigner, E. P. (1934). On an algebraic generalization of the quantum mechanical
formalism. Annals of Mathematics,
35, 29. https://www.jstor.org/stable/1968117
Joyce, R. (2016). Evolution and moral
naturalism. In The Blackwell Companion
to Naturalism (pp. 369–385). John Wiley &
Sons. http://personal.victoria.ac.nz/richard_joyce/acrobat/joyce_2016_evolution.and.moral.naturalism.pdf
Joyce, T. & Herrmann, J. M. (2017). A review of
no free lunch theorems, and their implications for metaheuristic
optimisation. In X. S. Yang (Ed.), Nature-Inspired Algorithms and Applied
Optimization (pp. 27–52).
Juhl, C. & Loomis, E. (2009). Analyticity.
Routledge.
Junk, T. (1999). Confidence level computation for
combining searches with small statistics. Nuclear Instruments
and Methods in Physics Research Section A,
434, 435–443. https://arxiv.org/abs/hep-ex/9902006
Jurafsky, D. & Martin, J. H. (2022). Speech
and Language Processing: An introduction to natural language processing,
computational linguistics, and speech recognition (3rd ed.).
https://web.stanford.edu/~jurafsky/slp3/ed3book_jan122022.pdf
Kadanoff, L. P. (2013). Theories of matter:
Infinities and renormalization. In R. Batterman (Ed.), The Oxford Handbook of Philosophy of Physics
(pp. 109–141). Oxford University Press. https://arxiv.org/abs/1002.2985
Kadison, R. V. (1965). Transformations of states in
operator theory and dynamics. Topology,
3, 177–198. https://doi.org/10.1016/0040-9383(65)90075-3
Kagan, S. (2012). Death. Yale University
Press.
Kaldor, N. (1961). Capital accumulation and
economic growth. In Lutz & Hague (Eds.), The Theory of Capital (pp. 177–222).
London. http://gesd.free.fr/kaldor61.pdf
Kalupahana, D. J. (1992). A History of Buddhist
Philosophy: Continuities and Discontinuities.
University of Hawaii Press.
Kant, I. (1912). Prolegomena to Any Future
Metaphysics. (P. Carus, Trans.). Chicago: Open
Court. (Originally published in 1783 as Prolegomena zu einer
jeden künftigen Metaphysik).
———. (1996). Critique of Pure
Reason. (W. Pluhar, Trans.). Hackett.
(Originally published in 1787).
Kaplan, J. et al. (2019). Notes on contemporary
machine learning for physicists. https://sites.krieger.jhu.edu/jared-kaplan/files/2019/04/ContemporaryMLforPhysicists.pdf
———. (2020). Scaling laws for neural language
models. https://arxiv.org/abs/2001.08361
Kardum, M. (2020). Rudolf Carnap–The grandfather of
artificial neural networks: The influence of Carnap’s philosophy on
Walter Pitts. In S. Skansi (Ed.), Guide To Deep
Learning Basics: Logical, Historical And Philosophical
Perspectives (pp. 55–66). Springer.
Karniadakis, G.E. et al. (2021). Physics-informed
machine learning. Nature Reviews Physics,
3, 422–440. https://doi.org/10.1038/s42254-021-00314-5
Kasprzak, W., Lysik, B., & Rybaczuk, M. (1990). Dimensional Analysis in the Identification of
Mathematical Models. World Scientific.
Kastler, D. (2003). Rudolf Haag—Eighty Years.
Communications in Mathematical Physics,
237, 3–6.
Katz, V. & Egenes, T. (2015). The Upanishads: A New
Translation. Penguin.
Katzir, R. (2023). Why large language models are
poor theories of human linguistic cognition: A reply to
Piantadosi. https://lingbuzz.net/lingbuzz/007190
Kaufmann, W. A. (2015). The Faith of a
Heretic. Princeton University Press.
(Originally published in 1961).
Kazemier, B. H. & Vuysje, D. (1962). Logic
and Language: Studies Dedicated to Professor Rudolf Carnap on the
Occasion of His Seventieth Birthday. Springer.
Keller, K. J., Papadopoulos, M. A., & Reyes-Lega, A. F. (2007).
On the realization of symmetries in quantum
mechanics. https://arxiv.org/abs/0712.0997
Kellogg, C. (2009). An American reader: Bill
Clinton,. Los Angeles Times. https://latimesblogs.latimes.com/jacketcopy/2009/07/america-reads-bill-clinton.html
Kelvin, L. (1901). Nineteenth century clouds over
the dynamical theory of heat and light. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 2, 1–40. https://www.equipes.lps.u-psud.fr/Montambaux/histoire-physique/Kelvin-1900.pdf
Keoke, E. D. & Porterfield, K. M. (2002). Encyclopedia of American Indian Contributions to the
World. Checkmark Books. https://mexikaresistance.files.wordpress.com/2013/09/american-indian-contributions-to-the-world.pdf
Keynes, J. M. (1921). A Treatise on
Probability. London: Macmillan and Co.
Keyt, D. (1964). Wittgenstein’s picture theory of
language. The Philosophical Review,
73, 493–511. https://www.jstor.org/stable/2183303
Khanna, P. (2018). Positivism and realism.
In P. Liamputtong (Ed.), Handbook of Research
Methods in Health Social Sciences. Springer.
Khlentzos, D. (2011). Challenges to metaphysical
realism. Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/realism-sem-challenge/
Kiani, B., Balestriero, R., Lecun, Y., & Lloyd, S. (2022). projUNN: efficient method for training deep networks with
unitary matrices. https://arxiv.org/abs/2203.05483
Kinsella, D. (2005). No rest for the democratic
peace. American Political Science Review,
99, 453–457.
Klaczynski, L. (2016). Haag’s theorem in
renormalised quantum field theories. https://arxiv.org/abs/1602.00662
Kleene, S. C. (1943). Recursive predicates and
quantifiers. Transactions of the American Mathematical
Society, 53, 41–73. https://www.jstor.org/stable/1990131
———. (1952). Introduction to
Metamathematics. North-Holland Publishing.
Klocksiem, J. (2019). Against reductive ethical
naturalism. Philosophical Studies,
176, 1991–2010.
Koch, C., Massimini, M., Boly, M., & Tononi, G. (2016). Neural correlates of consciousness: Progress and
problems. Nature Reviews: Neuroscience,
17, 307–321.
Konnikova, M. (2012). Humanities aren’t a science.
Stop treating them like one. Scientific American Blogs.
August 10, 2012. https://blogs.scientificamerican.com/literally-psyched/humanities-arent-a-science-stop-treating-them-like-one/
Kontsevich, M. & Segal, G. (2021). Wick
rotation and the positivity of energy in quantum field theory. https://arxiv.org/abs/2105.10161
Koons, R. C. (2000). The incompatibility of
naturalism and scientific realism. In W. L. Craig & J. P.
Moreland (Eds.), Naturalism: A critical
analysis. Routledge.
Korb, K. B. (2001). Machine learning as philosophy
of science. In Proceedings of the
ECML-PKDD-01 Workshop on Machine Learning as Experimental Philosophy of
Science. Freiburg.
Kornai, A. (2023). Vector Semantics.
Springer.
Korzybski, A. (1933). Science and
Sanity. New York: The Science Press Printing
Co.
Kosinski, M. (2023). Theory of mind may have
spontaneously emerged in large language models. https://arxiv.org/abs/2302.02083
Kovarik, V. et al. (2022). Rethinking formal models
of partially observable multiagent decision making.
Artificial Intelligence, 303, 103645. https://arxiv.org/abs/1906.11110
Krenn, M. et al. (2022). On scientific
understanding with artificial intelligence. Nature Reviews
Physics. https://www.nature.com/articles/s42254-022-00518-3
Krikorian, Y. H. (1944). Naturalism and the
Human Spirit. Columbia University Press.
Kripke, S. A. (1959). A completeness theorem in
modal logic. The Journal of Symbolic Logic,
24, 1–14. http://naturalthinker.net/trl/texts/Kripke,Saul/Kripke%20S.%20-%20A%20Completeness%20Theorem%20in%20Modal%20Logic.pdf
———. (1980). Naming and Necessity.
Harvard University Press. (Originally published in 1972).
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural
networks. Advances in Neural Information Processing
Systems, 2012, 1097–1105. https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
Kruschke, J. K. & Liddell, T. M. (2018). The
Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis,
and power analysis from a Bayesian perspective. Psychonomic
Bulletin & Review, 25, 178–206. https://link.springer.com/article/10.3758/s13423-016-1221-4
Kubrick, S. (1968). Playboy Interview: Stanley Kubrick.
Playboy Magazine, 9, 94. https://galacticjourney.org/stories/PB_1968-09_Kubrik-Interview.pdf
Kuhn, H. W. (1950). A simplified two-person
poker. Contributions to the Theory of Games,
1, 97–103.
Kuhn, T. (1962). The Structure of Scientific
Revolutions. University of Chicago Press.
Kun, J. (2018). A Programmer’s Introduction to
Mathematics. CreateSpace Independent Publishing
Platform.
Kurzweil, R. (2012). How to Create a
Mind. Penguin Books.
Ladyman, J., Ross, D., Spurrett, D., & Collier, J. (2007).
Every Thing Must Go: Metaphysics Naturalised.
Oxford University Press.
Lan, Z. et al. (2019). ALBERT: A lite BERT for
self-supervised learning of language representations. https://arxiv.org/abs/1909.11942
Lanctot, M. (2013). Monte Carlo Sample and
Regret Minimization for Equilibrium Computation and Decision-Making in
Large Extensive Form Games. University of
Alberta. (PhD thesis). http://mlanctot.info/files/papers/PhD_Thesis_MarcLanctot.pdf
Lanctot, M. et al. (2017). A unified game-theoretic
approach to multiagent reinforcement learning. Advances in
Neural Information Processing Systems, 30. https://arxiv.org/abs/1711.00832
Lanctot, M., Waugh, K., Zinkevich, M., & Bowling, M. (2009). Monte Carlo sampling for regret minimization in extensive
games. Advances in Neural Information Processing
Systems, 22, 1078–1086. https://proceedings.neurips.cc/paper/2009/file/00411460f7c92d2124a67ea0f4cb5f85-Paper.pdf
Landgrebe, J. & Smith, B. (2023). Why
Machines Will Never Rule the World: Artificial Intelligence Without
Fear. Routledge.
Lauc, D. (2020). Machine learning and the
philosophical problems of induction. In S. Skansi (Ed.),
Guide To Deep Learning Basics: Logical, Historical And
Philosophical Perspectives (pp. 93–106).
Springer.
Laughlin, R. B. & Pines, D. (2000). The theory
of everything. Proceedings of the National Academy of
Sciences, 97, 28–31.
Lavers, G. (2004). Carnap, semantics and
ontology. Erkenntnis, 60, 295–316.
———. (2015). Carnap, Quine, quantification and
ontology. In Quantifiers, Quantifiers,
and Quantifiers: Themes in logic, metaphysics, and language
(pp. 271–299). Springer.
Law, S. (2010). The evil-god challenge.
Religious Studies, 46, 353–373. https://www.jstor.org/stable/40927250
Lawhead, J. (2016). My Scientism. (Post and discussion on
Google+). https://web.archive.org/web/20160316131553/https://plus.google.com/+JonLawhead/posts/5gkhSHYCCdG
Lawvere, F. W. (1963). Functorial Semantics of
Algebraic Theories and Some Algebraic Problems in the context of
Functorial Semantics of Algebraic Theories. Columbia
University. (Ph.D. thesis). http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html
Lazarovici, D. (2018). Against fields.
European Journal for Philosophy of Science,
8, 145–170. https://arxiv.org/abs/1809.00855
Leah, R. (2018). “How do you separate fact
and opinion?” Rudy Giuliani mused. Then, Stephen Colbert offered
an answer. Salon. May 8, 2018. https://www.salon.com/2018/05/08/how-do-you-separate-fact-and-opinion-rudy-giuliani-mused-then-stephen-colbert-offered-an-answer
LeCun, Y. et al. (1989). Backpropagation applied to
handwritten zip code recognition. Neural Computation,
1, 541–551. https://web.archive.org/web/20150611222615/http://yann.lecun.com/exdb/publis/pdf/lecun-89e.pdf
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature,
521, 436–44.
LeCun, Y. & Bottou, L. (1998). Efficient BackProp. In
G. B. Orr & K. R. Muller (Eds.), Neural
Networks: Tricks of the trade. Springer. http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE,
86, 2278–2324. http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf
Leemis, L. M. & McQueston, J. T. (2008). Univariate distribution relationships. The
American Statistician, 62, 45–53. http://www.stat.rice.edu/~dobelman/courses/texts/leemis.distributions.2008amstat.pdf
Leggett, A. J. (2002). Testing the limits of
quantum mechanics: Motivation, state of play, prospects.
Journal of Physics: Condensed Matter, 14,
415–451.
Lehmann, H., Symanzik, K., & Zimmermann, W. (1955). Zur formulierung quantisierter feldtheorien.
Nuovo Cimento, 1, 205–225.
Lei, N., Luo, Z., Yau, S., & Gu, D. X. (2018). Geometric understanding of deep learning. https://arxiv.org/abs/1805.10451
Leibniz, G. (1951). The Art of Discovery. In
P. Wiener (Ed.), Leibniz: Selections.
Scribner. (Originally published in 1685).
———. (1989). Dissertatio de Arte
Combinatoria. In L. E. Loemker (Ed.), Philosophical Papers and Letters: The New Synthese
Historical Library (Texts and Studies in the History of Philosophy), vol
2 (pp. 73–84). Springer. (Originally published
in 1666).
Leibniz, G. W. (1996). New Essays on Human
Understanding. (P. Remnant & J. Bennett, Trans.). New
York: Cambridge University Press. (Originally written in
1704).
Leifer, M. S. & Spekkens, R. W. (2013). Towards
a formulation of quantum theory as a causally neutral theory of Bayesian
inference. Physical Review A, 88,
052130. https://arxiv.org/abs/1107.5849
Leiter, B. (2019). The death of God and the death
of morality. The Monist, 102,
386–402.
Leitgeb, H. (2023). Vindicating the verifiability
criterion. Philosophical Studies. https://doi.org/10.1007/s11098-023-02071-w
Leitgeb, H. & Carus, A. (2020). Rudolf Carnap.
Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/entries/carnap/index.html
Leitgeb, H., Nodelman, U., & Zalta, E. N. (2025). A defense of logicism. Bulletin of Symbolic
Logic, 31, 88–152. https://www.cambridge.org/core/journals/bulletin-of-symbolic-logic/article/defense-of-logicism/A7F3DFF29C85BE044C6DDBBBB81CA6B4
Lepine, D. (2016). Deligne’s theorem on tensor
categories. https://alistairsavage.ca/pubs/Lepine-Deligne_Theorem.pdf
Lettvin, J. Y., Maturanat, H. R., McCulloch, W. S., & Pitts, W. H.
(1959). What the frog’s eye tells the frog’s
brain. Proceedings of the Institute of Radio Engineers,
47, 1940.
Lewis, C. I. (1917). The issues concerning material
implication. The Journal of Philosophy, Psychology and
Scientific Methods, 14, 350–356. https://www.jstor.org/stable/2940255
Lewis, C. S. (1947). Miracles: A Preliminary
Study. Geoffrey Bles.
———. (1955). Surprised by Joy.
Harvest.
Lewis, D. (1970). How to define theoretical
terms. The Journal of Philosophy,
67, 427–446. https://www.jstor.org/stable/2023861
———. (1981). Causal decision theory.
Australasian Journal of Philosophy, 59,
5–30. https://www.andrewmbailey.com/dkl/Causal_Decision_Theory.pdf
———. (1986a). On the Plurality of
Worlds. Oxford: Blackwell.
———. (1986b). Philosophical Papers II.
Oxford University Press.
Lewis, D. K. (1969). Policing the Aufbau.
Philosophical Studies, 20, 13–17. https://www.jstor.org/stable/4318613
Lewis, M. et al. (2019). BART: Denoising
sequence-to-sequence pre-training for natural language generation,
translation, and comprehension. https://arxiv.org/abs/1910.13461
Li, H. et al. (2020). Regret minimization via novel
vectorized sampling policies and exploration. http://aaai-rlg.mlanctot.info/2020/papers/AAAI20-RLG_paper_14.pdf
Lin, H. W., Tegmark, M., & Rolnick, D. (2017). Why does deep and cheap learning work so well?
Journal of Statistical Physics, 168,
1223–1247. https://link.springer.com/article/10.1007/s10955-017-1836-5
Lin, J. Y. (1995). The Needham Puzzle: Why the
industrial revolution did not originate in China. Economic
Development and Cultural Change, 43, 269–292.
Linde, A. D. (1982). A new inflationary universe
scenario: A possible solution of the horizon, flatness, homogeneity,
isotropy and primordial monopole problems. Physics Letters
B, 108, 389–393. https://www.sciencedirect.com/science/article/pii/0370269382912199
———. (1983). Chaotic inflation. Physics
Letters B, 129, 177–181.
Linsky, B. & Zalta, E. N. (1995). Naturalized
platonism versus platonized naturalism. Journal of
Philosophy, 92, 525–555. https://www.jstor.org/stable/2940786
———. (2006). What is Neologicism?
Bulletin of Symbolic Logic, 12, 60–99. http://mally.stanford.edu/Papers/neologicism2.pdf
Lisi, A. G. (2007). An exceptionally simple theory
of everything. https://arxiv.org/abs/0711.0770
———. (2017). Emergence. https://www.edge.org/response-detail/27149
Lista, L. (2016a). Practical statistics for
particle physicists. https://arxiv.org/abs/1609.04150
———. (2016b). Statistical Methods for Data
Analysis in Particle Physics. Springer. http://foswiki.oris.mephi.ru/pub/Main/Literature/st_methods_for_data_analysis_in_particle_ph.pdf
Lisy, V. & Bowling, M. (2016). Equilibrium
approximation quality of current no-limit poker bots. https://arxiv.org/abs/1612.07547
Liu, H., Dai, Z., So, D. R., & Le, Q. V. (2021). Pay attention to MLPs. https://arxiv.org/abs/2105.08050
Liu, Y. et al. (2019). RoBERTa: A robustly
optimized BERT pretraining approach. https://arxiv.org/abs/1907.11692
———. (2021). A survey of visual
transformers. https://arxiv.org/abs/2111.06091
Liu, Z. et al. (2024). KAN: Kolmogorov-Arnold Networks. https://arxiv.org/abs/2404.19756
Liu, Z., Lin, Y., & Sun, M. (2023). Representation Learning for Natural Language
Processing. Springer. https://link.springer.com/book/10.1007/978-981-99-1600-9
Liu, Z., Madhavan, V., & Tegmark, M. (2022). AI
Poincare 2: Machine learning conservation laws from differential
equations. https://arxiv.org/abs/2203.12610
Lloyd, S. (1993). Quantum-mechanical computers and
uncomputability. Physical Review Letters, 71,
943–46.
Loeb, D. (2003). Gastronomic realism: A cautionary
tale. Journal of Theoretical and Philosophical
Psychology, 23, 30–49. https://philpapers.org/rec/DONGR
Loewer, B. (1997). A guide to naturalizing
semantics. In W. Hale B. & A. Miller (Eds.), A Companion to the Philosophy of Language
(pp. 174–196). Chichester, West Sussex, UK:
Wiley-Blackwell. https://sites.rutgers.edu/barry-loewer/wp-content/uploads/sites/195/2019/06/A_Companion_to_the_Philosophy_of_Language_-_Chapter_8_A_Guide_to_Naturalizing_Semantics_.pdf
———. (2019). Humean laws and explanation.
Principia: An International Journal of Epistemology,
23, 373–385.
Loh, W. Y. (1987). Calibrating confidence
coefficients. Journal of the American Statistical
Association, 82, 155–162. https://www.tandfonline.com/doi/abs/10.1080/01621459.1987.10478408
Longpre, S. (2024). Consent in crisis: The rapid
decline of the AI data commons. https://www.dataprovenance.org/Consent_in_Crisis.pdf
Lovering, C. & Pavlick, E. (2022). Unit testing
for concepts in neural networks. Transactions of the
Association for Computational Linguistics,
10, 1193–1208. https://aclanthology.org/2022.tacl-1.69/
LSND Collaboration. (1996). Evidence for neutrino
oscillations from muon decay at rest. Physical Review C,
54, 2685–2708. https://arxiv.org/abs/nucl-ex/9605001
———. (2001). Evidence for neutrino oscillations
from the observation of electron anti-neutrinos in a muon anti-neutrino
beam. Physical Review D, 64,
112007. https://arxiv.org/abs/hep-ex/0104049
Lu, C. et al. (2024). The AI Scientist: Towards
fully automated open-ended scientific discovery. https://arxiv.org/abs/2408.06292
Lu, Z. et al. (2017). The expressive power of
neural networks: A view from the width. Advances in Neural
Information Processing Systems, 30. https://proceedings.neurips.cc/paper/2017/file/32cbf687880eb1674a07bf717761dd3a-Paper.pdf
Lucretius. (1995). On the Nature of Things: De
Rerum Natura. (A. M. Esolen, Trans.). Johns Hopkins
University Press. (Originally written in the first century BCE).
Lugg, A. (2006). Russell as a precursor of
Quine. Bertrand Russell Society Quarterly,
128, 9–21. https://bertrandrussellsocietyorg.files.wordpress.com/2020/04/brsq_0128-0129.pdf
Lundberg, I., Johnson, R., & Stewart, B. M. (2021). What is your estimand? Defining the target quantity
connects statistical evidence to theory. American
Sociological Review, 86, 532–565. https://journals.sagepub.com/doi/abs/10.1177/00031224211004187
Lyons, L. (2008). Open statistical issues in
particle physics. The Annals of Applied Statistics,
2, 887–915. https://projecteuclid.org/journals/annals-of-applied-statistics/volume-2/issue-3/Open-statistical-issues-in-Particle-Physics/10.1214/08-AOAS163.full
Lyre, H. (2008). Does the Higgs mechanism
exist? International Studies in the Philosophy of
Science, 22, 119–133. https://arxiv.org/abs/0806.1359
Ma, S. et al. (2024). The era of 1-bit LLMs: All
large language models are in 1.
Ma, X. et al. (2024). Megalodon: Efficient LLM
pretraining and inference with unlimited context length. https://arxiv.org/abs/2404.08801
Mac Suibhne, S. (2009). Wrestle to be the man
philosophy wished to make you: Marcus Aurelius, reflective
practitioner. Reflective Practice,
10, 429–436.
MacDonald, M. (1936). Russell and McTaggart.
Philosophy, 11, 322–335. https://www.jstor.org/stable/3746190
MacFarlane, J. (2021). Philosophical Logic: A
contemporary introduction. Routledge.
MacFarquhar, L. (2014). Two Heads: A marriage
devoted to the mind-body problem. New Yorker. July 21,
2014. https://www.newyorker.com/magazine/2007/02/12/two-heads
Mach, E. (1914). The Analysis of Sensations and
the Relation of the Physical. (C. M. Williams & S.
Waterlow, Trans.). Open Court.
MacKay, D. J. C. (2003). Information Theory,
Inference, and Learning Algorithms. Cambridge
University Press.
Mackie, J. L. (1982). The Miracle of Theism:
Arguments for and against the existence of God. Oxford
University Press.
———. (2007). Ethics: Inventing Right and
Wrong. Penguin. (First edition published in
1977).
Maddox, W. J., Benton, G., & Wilson, A. G. (2023). Rethinking parameter counting in deep models: Effective
dimensionality revisited. https://arxiv.org/abs/2003.02139
Maddy, P. (2007). Second Philosophy. Oxford
University Press.
Mahner, M. & Bunge, M. (1996). Is religious
education compatible with science education? Science &
Education, 5, 101–123. https://www.hpsst.com/uploads/6/2/9/3/62931075/bunge___mahner__1996__sc.___religion.pdf
Mahowald, K. et al. (2023). Dissociating language
and thought in large language models: a cognitive perspective. https://arxiv.org/abs/2301.06627
Makowsky, J. A. (1995). The impact of model theory
on theoretical computer science. Studies in Logic and the
Foundations of Mathematics, 134, 239–262. https://doi.org/10.1016/S0049-237X(06)80047-9
Malament, D. B. (1996). In defence of dogma: Why
there cannot be a relativistic quantum mechanics of (localizable)
particles. In R. Clifton (Ed.), Perspectives on Quantum Reality (pp. 1–10).
Springer.
Maldacena, J. M. (1998). The large N limit of superconformal field
theories and supergravity. Advances in Theoretical and
Mathematical Physics, 2, 231–252. https://arxiv.org/abs/hep-th/9711200
Manton, N. S. (2019). The inevitability of
sphalerons in field theory. Philosophical Transactions of the
Royal Society A, 377, 20180327. http://dx.doi.org/10.1098/rsta.2018.0327
Marchetti, G. L., Hillar, C., Kragic, D., & Sanborn, S. (2023).
Harmonics of learning: Universal fourier features
emerge in invariant networks. https://arxiv.org/abs/2312.08550
Marcus, G. (2018). Deep learning: A critical
appraisal. https://arxiv.org/abs/1801.00631
Mark, J. T. & Marion, B. (2010). Natural
selection and veridical perceptions. Journal of Theoretical
Biology, 266, 504–515. http://cogsci.uci.edu/~ddhoff/PerceptualEvolution.pdf
Marks, J. M. (2009). Why I Am Not A Scientist:
Anthropology and Modern Science. University of
California Press.
Marletto, C. (2015). Constructor theory of
life. Journal of the Royal Society Interface,
12, 20141226. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4345487/
Marschall, B. (2021). Carnap and Beth on the limits
of tolerance. Canadian Journal of Philosophy,
51, 282–300. https://doi.org/10.1017/can.2021.16
———. (2022). Carnap’s philosophy of
mathematics. Philosophy Compass,
17, 12884. https://doi.org/10.1111/phc3.12884
Marsh, A. (2016). Gauge theories and fiber bundles:
Definitions, pictures, and results. https://arxiv.org/abs/1607.03089
Marshal, M. (2011). You’d beat a Neanderthal in a
race. New Scientist. February 2, 2011. https://www.newscientist.com/article/mg20927984-700-youd-beat-a-neanderthal-in-a-race/
Marshall, S. J. (2001). The Mandate of Heaven:
Hidden History in the Book of Changes. Routledge
Curzon.
Martens, N. (2022). Dark matter realism.
Foundations of Physics, 52, 1–19. https://link.springer.com/article/10.1007/s10701-021-00524-y
Martin, J. (2012). Everything you always wanted to
know about the cosmological constant problem (but were afraid to
ask). https://arxiv.org/abs/1205.3365
Martin, S. P. (2011). Phenomenology of particle
physics. https://www.ippp.dur.ac.uk/~mspannow/files/Phenomenology_Particle_Physics_Martin.pdf
———. (2016). A supersymmetry primer. (First
published in 1997). https://arxiv.org/abs/hep-ph/9709356
Martin, S. P. & Wells, J. (2023). Elementary Particles and Their Interactions.
Springer. https://link.springer.com/book/10.1007/978-3-031-14368-7
Martin-Dussaud, P., Rovelli, C., & Zalamea, F. (2018). The notion of locality in relational quantum
mechanics. https://arxiv.org/abs/1806.08150
Martínez-Ordaz, M. R. (2021a). Is there anything
special about the ignorance involved in big data practices? http://philsci-archive.pitt.edu/19671/
———. (2021b). The ignorance behind inconsistency
toleration. Synthese, 198,
8665–8686. http://philsci-archive.pitt.edu/19672/
Maslej, N. et al. (2023). The AI Index 2023 Annual Report.
https://aiindex.stanford.edu/wp-content/uploads/2023/04/HAI_AI-Index-Report_2023.pdf
———. (2024). The AI Index 2024 Annual Report. https://aiindex.stanford.edu/wp-content/uploads/2024/05/HAI_AI-Index-Report-2024.pdf
Maudlin, T. (1995). Three measurement
problems. Topoi, 14, 7–15.
———. (1996). Quantum Nonlocality and
Relativity: Metaphysical Intimations of Modern Physics.
Wiley-Blackwell.
———. (1998). Healey on the Aharonov-Bohm
effect. Philosophy of Science, 65,
361–368. https://www.jstor.org/stable/188266
———. (2007). The Metaphysics Within Physics.
Oxford University Press.
———. (2012). Philosophy of Physics: Space and
Time. Princeton University Press.
———. (2014). What Bell did. Journal of
Physics A: Mathematical and Theoretical, 47,
424010. https://iopscience.iop.org/article/10.1088/1751-8113/47/42/424010/pdf
———. (2018). Ontological clarity via canonical
presentation: Electromagnetism and the Aharonov-Bohm effect.
Entropy, 20, 465. https://www.mdpi.com/1099-4300/20/6/465
———. (2019). Philosophy of Physics: Quantum
Theory. Princeton University Press.
Maxwell, G. (1968). Scientific methodology and the
causal theory of perception. Studies in Logic and the
Foundations of Mathematics, 49, 148–177.
Mayo, D. G. (1981). In defense of the
Neyman-Pearson theory of confidence intervals. Philosophy of
Science, 48, 269–280.
———. (1996). Error and the Growth of
Experimental Knowledge. Chicago University
Press.
———. (2014). On the Birnbaum Argument for the
Strong Likelihood Principle,. Statistical Science,
29, 227–266.
———. (2018). Statistical Inference as Severe
Testing: How to Get Beyond the Statistics Wars.
Cambridge University Press.
———. (2019). The law of likelihood and error
statistics. https://errorstatistics.com/2019/04/04/excursion-1-tour-ii-error-probing-tools-versus-logics-of-evidence-excerpt/
———. (2021). Significance tests: Vitiated or
vindicated by the replication crisis in psychology? Review of
Philosophy and Psychology, 12, 101–121. https://link.springer.com/article/10.1007/s13164-020-00501-w
Mayo, D. G. & Spanos, A. (2006). Severe testing
as a basic concept in a Neyman-Pearson philosophy of induction.
British Journal for the Philosophy of Science,
57, 323–357.
———. (2011). Error statistics. In Philosophy of Statistics (pp. 153–198).
North-Holland.
McCarthy, C. (2017). The Kekulé
Problem. Nautilus, 47. https://nautil.us/issue/47/consciousness/the-kekul-problem
McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (1955).
A proposal for the Dartmouth Summer Research
Project on Artificial Intelligence. http://www-formal.stanford.edu/jmc/history/dartmouth.pdf
McComas, W. F. (1996). Ten myths of science:
Reexamining what we think we know about the nature of science.
School Science and Mathematics, 96,
10–16.
———. (2002). The principal elements of the nature
of science: Dispelling the myths. In W. F. McComas (Ed.),
The Nature of Science in Science
Education (pp. 53–70). Springer Netherlands.
———. (2008). Seeking historical examples to
illustrate key aspects of the nature of science. Science
& Education, 17.
McCrea, A. (2019). The magical thinking of guys who
love logic. The Outline. February 15, 2019. https://theoutline.com/post/7083/the-magical-thinking-of-guys-who-love-logic
McCrimmon, K. (2000). A Taste of Jordan
Algebras. Springer. http://old.math.nsc.ru/LBRT/a1/files/mccrimmon.pdf
McCulloch, W. & Pitts, W. (1943). A logical
calculus of ideas immanent in nervous activity. Bulletin of
Mathematical Biophysics, 5, 115–133. https://link.springer.com/content/pdf/10.1007/BF02478259.pdf
McDermott, J. (2019). When and why metaheuristics
researchers can ignore "no free lunch" theorems. https://arxiv.org/abs/1906.03280
McDougall, C. et al. (2023). Copy suppression:
Comprehensively understanding an attention head. https://arxiv.org/abs/2310.04625
McEvilley, T. (2002). The Shape of Ancient
Thought: Comparative studies in Greek and Indian
philosophies. Allworth Press.
McFadden, D. & Zarembka, P. (1973). Conditional
logit analysis of qualitative choice behavior. In Frontiers in Econometrics (pp. 105–142). New
York: Academic Press.
McGuinness, B. (2008). Wittgenstein in
Cambridge: Letters and Documents 1911-1951.
Wiley-Blackwell.
McKay, S. (2020). The marvel of language: Knowns,
unknowns, and maybes. Rocky Mountain Review,
74, 49–69. https://www.jstor.org/stable/26977687
McMahan, D. L. (2004). Modernity and the early
discourse of scientific Buddhism. Journal of the American
Academy of Religion, 72, 897–933. https://www.jstor.org/stable/40005933
McManus, M. (2020). Myth and mayhem: A leftist
critique of Jordan Peterson. https://areomagazine.com/2020/04/19/myth-and-mayhem-a-leftist-critique-of-jordan-peterson/
McNutt, P. M. (1999). Reconstructing the
Society of Ancient Israel. Westminster John Knox
Press.
McRobert, J. (2002). Mary Shepherd’s two senses of
necessary connection. https://philpapers.org/rec/MCRMST-2
McTaggart, J. E. (1908). The unreality of
time. Mind, 17, 457–474. https://philarchive.org/archive/MCTTUO
Meehl, P. E. (1978). Theoretical risks and tabular
asterisks: Sir Karl, Sir Ronald, and the slow progress of soft
psychology. Journal of Consulting and Clinical
Psychology, 46, 806–834.
Meng, K., Bau, D., Andonian, A., & Belinkov, Y. (2023). Locating and editing factual associations in GPT
https://arxiv.
Mermin, N. D. (1985). Is the moon there when nobody
looks? Reality and the quantum theory. Physics Today,
38, 38–47.
———. (1990). Quantum mysteries revisited.
American Journal of Physics, 58, 731–734.
———. (2022). A note on the quantum measurement
problem. https://arxiv.org/abs/2206.10741
Merrill, W. & Sabharwal, A. (2022). The
parallelism tradeoff: Limitations of log-precision transformers.
https://arxiv.org/abs/2207.00729
Mialon, G. et al. (2023). Augmented Language
Models: a Survey. https://arxiv.org/abs/2302.07842
MicroBooNE Collaboration. (2021). Search for
neutrino-induced neutral current Δ radiative decay in MicroBooNE and
a first test of the MiniBooNE low energy excess under a single-photon
hypothesis. https://arxiv.org/abs/2110.00409
MICrONS Consortium. (2025). Functional connectomics
spanning multiple areas of mouse visual cortex. Nature,
640, 435–447. https://www.nature.com/articles/s41586-025-08790-w
Mikkola, M. (2009). Gender concepts and
intuitions. Canadian Journal of Philosophy,
39, 559–583. https://www.jstor.org/stable/27822065
Mikolov, T. et al. (2013). Distributed
representations of words and phrases and their compositionality.
https://arxiv.org/abs/1310.4546
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector
space. https://arxiv.org/abs/1301.3781
Mikolov, T., Yih, W. T., & Zweig, G. (2013). Linguistic regularities in continuous space word
representations. NAACL HLT 2013. https://www.aclweb.org/anthology/N13-1090.pdf
Milkov, N. (2013). The Berlin Group and the Vienna
Circle: Affinities and divergences. In N. Milkov & V.
Peckhaus (Eds.), The Berlin Group and the
Philosophy of Logical Empiricism (pp. 3–32).
Springer.
Mill, J. S. (1843). A System of
Logic. New York: Harper and Brothers.
———. (1865). Auguste Comte and
Positivism. https://www.gutenberg.org/files/16833/16833-h/16833-h.htm
———. (1877). An Examination of Sir William
Hamilton’s Philosophy, vol II. New York: Henry Holt
and Co.
MiniBooNE Collaboration. (2018). Significant excess
of electron-like events in the MiniBooNE short-baseline neutrino
experiment. Physical Review Letters,
121, 221801. https://arxiv.org/abs/1805.12028
Minsky, M. & Papert, S. (1969). Perceptrons: An Introduction to Computational
Geometry. MIT Press.
Misner, C. W., Thorne, K. S., & Wheeler, J. A. (1973).
Gravitation. Freeman and Co.
(Reprinted by Princeton University Press (2017)).
Mitchell, T. M. (1980). The need for biases in
learning generalizations. In Readings in
Machine Learning (pp. 184–192). San Mateo, CA,
USA. http://www.cs.cmu.edu/afs/cs/usr/mitchell/ftp/pubs/NeedForBias_1980.pdf
Mnih, V. et al. (2013). Playing Atari with deep
reinforcement learning. https://arxiv.org/abs/1312.5602
———. (2015). Human-level control through deep
reinforcement learning. Nature,
518, 529–533. http://files.davidqiu.com//research/nature14236.pdf
Mohamadi, S. et al. (2023). ChatGPT in the age of
generative AI and large language models: A concise survey. https://arxiv.org/abs/2307.04251v1
Molinari, L. G. (2006). Another proof of Gell-Mann
and Low’s theorem. https://arxiv.org/abs/math-ph/0612030
Monk, J. D. (1976). Mathematical Logic.
Springer.
Montero, B. (1999). The Body Problem. Nous,
33, 183–200.
Moore, G. E. (1899). The nature of judgment.
Mind, 8, 176–193. https://www.jstor.org/stable/pdf/2247657.pdf
———. (1903). The refutation of idealism.
Mind, 12, 433–453. https://www.jstor.org/stable/pdf/2248251.pdf
———. (1925). A defence of common sense. In
J. H. Muirhead (Ed.), Contemporary British
Philosophy (pp. 147–170). London: Allen and
Unwin.
———. (1939). Proof of an external world.
Proceedings of the British Academy, 25,
273–300.
———. (1988). Principia Ethica. Prometheus
Books. (First published in 1903).
Moore, J. (2009). John Irving on religion, sports
and Owen Meany. The Denver Post. April 2, 2009. https://www.denverpost.com/2009/04/02/john-irving-on-religion-sports-and-owen-meany/
Moore, M. B. & Kelle, B. E. (2011). Biblical History and Israel’s Past: The Changing Study of
the Bible and History. Eerdmans.
Morales, J. A. C. & Zilber, B. (2014). The
geometric semantics of algebraic quantum mechanics. https://arxiv.org/abs/1410.7277
Moravcik, M. et al. (2017). DeepStack: Expert-level
artificial intelligence in heads-up no-limit poker.
Science, 356, 508–513. https://arxiv.org/abs/1701.01724
Moravec, H. (1998). When will computer hardware
match the human brain? Journal of Evolution and
Technology, 1. https://jetpress.org/volume1/moravec.htm
Moretti, V. (2015). Mathematical foundations of
quantum mechanics: An advanced short course. https://arxiv.org/abs/1508.06951
———. (2023). On the relativistic spatial
localization for massive real scalar Klein-Gordon quantum
particles. https://arxiv.org/abs/2304.02133
Morgan, M. S. & Morrison, M. (1999). Models
as Mediators. Cambridge University Press.
Morris, K. (2019). Physicalism Deconstructed:
Levels of reality and the mind-body problem. Cambridge
University Press.
Muennighoff, N. et al. (2023). Scaling
data-constrained language models. https://arxiv.org/abs/2305.16264
Mulders, P. J. (2011). Quantum field theory.
https://www.nat.vu.nl/~mulders/QFT-0.pdf
Murayama, H. (2000). Supersymmetry
phenomenology. https://arxiv.org/abs/hep-ph/0002232
Murphy, K. P. (2012). Machine Learning: A
probabilistic perspective. MIT Press.
———. (2022). Probabilistic Machine Learning: An
introduction. MIT Press.
Murzi, M. (2001). Rudolf Carnap (1891-1970). Internet
Encyclopedia of Philosophy. https://iep.utm.edu/carnap/
———. (2004). Vienna circle. Internet
Encyclopedia of Philosophy. http://www.iep.utm.edu/viennacr/
Muthukumar, V., Vodrahalli, K., Subramanian, V., & Sahai, A. (2019).
Harmless interpolation of noisy data in
regression. https://arxiv.org/abs/1903.09139
Myrvold, W. C. (2015). What is a
wavefunction? Synthese, 192,
3247–3274. http://philsci-archive.pitt.edu/11117/
Nado, J. (2024). Truth in philosophy: a conceptual
engineering approach. https://link.springer.com/article/10.1007/s44204-024-00151-0
Nagarajan, V. (2021). Explaining generalization
in deep learning: progress and fundamental limits. (Ph.D.
thesis). https://arxiv.org/abs/2110.08922
Nagarjuna. (1995). The Fundamental Wisdom of
the Middle Way. (J. L. Garfield, Trans.). Oxford
University Press.
Nagel, E. (1961). The Structure of Science:
Problems in the Logic of Scientific Explanation.
Harcourt.
———. (2008). Issues in the logic of reductive
explanations. In M. A. Bedau & P. Humphreys (Eds.), Emergence: Contemporary Readings in Philosophy and
Science (pp. 359–373). MIT Press. https://perpus.univpancasila.ac.id/repository/EBUPT180357.pdf
Nagel, T. (1974). What is it like to be a
bat? The Philosophical Review, 83,
435–450. https://warwick.ac.uk/fac/cross_fac/iatl/study/ugmodules/humananimalstudies/lectures/32/nagel_bat.pdf
Nagele, C., Janssen, O., & Kleban, M. (2023). Decoherence: A numerical study. Journal of
Physics A: Mathematical and Theoretical, 56,
085301. https://iopscience.iop.org/article/10.1088/1751-8121/acb977
Nail, T. (2018). Lucretius I: An Ontology of
Motion. Edinburgh University Press.
Nakkiran, P. (2021). Turing-universal learners with
optimal scaling laws. https://arxiv.org/abs/2111.05321
Nakkiran, P. et al. (2019). Deep double descent:
Where bigger models and more data hurt. https://arxiv.org/abs/1912.02292
Nakkiran, P., Bradley, A., Zhou, H., & Advani, M. (2024). Step-by-step diffusion: An elementary tutorial. https://arxiv.org/abs/2406.08929
Nanamoli. (1992). The Life of the Buddha:
According to the Pali Canon. Buddhist Publication
Society.
Neller, T. W. & Lanctot, M. (2013). An
introduction to counterfactual regret minimization.
Proceedings of Model AI Assignments, 11.
http://cs.gettysburg.edu/~tneller/modelai/2013/cfr/cfr.pdf
Nelson, E. S. (2011). The Yijing and philosophy:
From Leibniz to Derrida. Journal of Chinese Philosophy,
38, 377–396. https://philarchive.org/rec/NELTYA
Neuber, M. (2014). Critical realism in perspective:
Remarks on a neglected current in Neo-Kantian epistemology. In M.
C. G. et al (Ed.), The Philosophy of Science in
a European Perspective: New Directions in the Philosophy of
Science (pp. 657–673). Springer. https://philpapers.org/rec/NEUCRI
Neurath, O. (1973). Anti-Spengler. In M. Neurath & R.
S. Cohen (Eds.), Empiricism and
Sociology (pp. 158–213). Dordrecht: Reidel.
(Originally published in 1921).
———. (1983). Protocol statements. In R. S.
Cohen & M. Neurath (Eds.), Otto Neurath Philosophical
Papers, 1913-1946 (pp. 91–99). Dordrecht:
Reidel. (Originally published in 1933).
Neurath, O., Carnap, R., & Morris, C. W. (1955). International Encyclopedia of Unified Science, Vol.
1. University of Chicago Press.
Newton, I. (2016). The Principia: Mathematical
Principles of Natural Philosophy. (I. B. Cohen, A. Whitman,
& J. Budenz, Trans.). University of California Press.
(Originally published in 1687).
Newton, T. D. & Wigner, E. P. (1949). Localized
states for elementary systems. Reviews of Modern
Physics, 21, 400–406. https://doi.org/10.1103/RevModPhys.21.400
Ney, A. (2012). Neo-positivist metaphysics.
Philosophical Studies, 160, 53–78. https://link.springer.com/article/10.1007/s11098-012-9912-9
———. (2014). Metaphysics: An
introduction. Routledge.
———. (2018). The Politics of Fundamentality.
https://fqxi.org/community/forum/topic/3095
———. (2019). Are the questions of metaphysics more
fundamental than those of science?. Philosophy and
Phenomenological Research. (forthcoming).
———. (2021a). From quantum entanglement to
spatiotemporal distance. In Christian Wüthrich Baptiste Le Bihan
& N. Huggett (Eds.), Philosophy Beyond
Spacetime. Oxford University Press.
———. (2021b). The fundamentality of physics:
Completeness or maximality. Oxford Studies in
Metaphysics, 12, 203. https://philpapers.org/rec/NEYTFO
Ney, A. & Albert, D. Z. (2013). The Wave
Function: Essays on the metaphysics of quantum mechanics.
Oxford University Press.
Neyman, J. (1955). The problem of inductive
inference. Communications on Pure and Applied
Mathematics, 8, 13–45. https://errorstatistics.files.wordpress.com/2017/04/neyman-1955-the-problem-of-inductive-inference-searchable.pdf
———. (1977). Frequentist probability and
frequentist statistics. Synthese,
36, 97–131.
Neyman, J. & Pearson, E. S. (1933). On the
problem of the most efficient tests of statistical hypotheses.
Philosophical Transactions of the Royal Society A,
231, 289–337.
Nguyen, T. (2016). The perturbative approach to
path integrals: A succinct mathematical treatment. Journal of
Mathematical Physics, 57, 092301. https://arxiv.org/abs/1505.04809
Nielsen, F. (2013). Cramer-Rao lower bound and
information geometry. https://arxiv.org/abs/1301.3578
———. (2020). An elementary introduction to
information geometry. Entropy, 22,
1100. https://www.mdpi.com/1099-4300/22/10/1100
Nietzsche, F. (2004). Ecce Homo: How One
Becomes What One Is and The Antichrist: A Curse on
Christianity. Algora Publishing.
Nigg, D. et al. (2015). Can different quantum state
vectors correspond to the same physical state? An experimental
test. New Journal of Physics, 18,
013007. https://arxiv.org/abs/1211.0942
Nikolić, H. (2007). Quantum mechanics: Myths and
facts. Foundations of Physics, 37,
1563–1611. https://link.springer.com/content/pdf/10.1007/s10701-007-9176-y.pdf
———. (2022). Relativistic QFT from a Bohmian
perspective: A proof of concept. Foundations of Physics,
52, 80. https://doi.org/10.1007/s10701-022-00600-x
Nirenburg, S. (1996). Bar Hillel and Machine
Translation: Then and Now.
Nissim, M., Noord, R. van, & Goot, R. van der. (2019). Fair is better than sensational: Man is to doctor as
woman is to doctor. Computational Linguistics,
46, 487–497.
nLab authors. (2021a). Causal perturbation
theory. https://ncatlab.org/nlab/show/causal+perturbation+theory
———. (2021b). Fiber bundles in physics. https://ncatlab.org/nlab/show/fiber+bundles+in+physics
Nodelman, U. & Zalta, E. N. (2014). Foundations
for mathematical structuralism. Mind,
123, 39–78. https://www.jstor.org/stable/24489523
Noether, E. (1918). Invariante
variationsprobleme. Nachrichten von Der Gesellschaft Der
Wissenschaften Zu Göttingen, Mathematisch-Physikalische
Klasse, 235.
Nola, R. (1999). On the possibility of a scientific
theory of scientific method. Science & Education,
8, 427–439.
Nola, R. & Sankey, H. (2007). Theories of
Scientific Method. Stocksfield: Acumen.
Norton, J. D. (1993). General covariance and the
foundations of general relativity: Eight decades of dispute.
Reports on Progress in Physics, 56,
791–858. https://web.archive.org/web/20171124074404/http://www.pitt.edu/~jdnorton/papers/decades.pdf
———. (2017). Einstein on Kant. https://www.pitt.edu/~jdnorton/teaching/HPS_0410/chapters/significance_GR_geometry/Einstein_on_Kant.html
Norvig, P. (2011). On Chomsky and the Two Cultures
of Statistical Learning. https://norvig.com/chomsky.html
Nozick, R. (1981). Philosophical Explanations.
Harvard University Press.
———. (2001). Invariances. Harvard University
Press.
———. (2013). Anarchy, State, and
Utopia. Basic Books. (First edition published
in 1974).
O’Hagan, A. (2010). Kendall’s Advanced Theory
of Statistics, Vol 2B: Bayesian Inference.
Wiley.
O’Keefe, T. (2001). Epicurus. Internet Encyclopedia of
Philosophy. https://iep.utm.edu/epicur/
O’Neill, G. K. (1974). The colonization of
space. Physics Today, 27, 32–40.
https://pubs.aip.org/physicstoday/article/27/9/32/429507/The-colonization-of-spaceCareful-engineering-and
O’Neill, J. & Uebel, T. (2004). Horkheimer and
Neurath: Restarting a disrupted debate. European Journal of
Philosophy, 12, 75–105.
O’Raifeartaigh, L. (1997). The Dawning of Gauge
Theory. Princeton University Press.
Ogden, C. K. & Richards, I. A. (1989). The
Meaning of Meaning. Harcourt Brace Jovanovich.
(Original published in 1923 by Kegan Paul).
Ohanian, H. C. (1986). What is spin?
American Journal of Physics, 54, 500.
Okasha, S. (2006). Evolution and the Levels of
Selection. Oxford University Press.
Open Logic Project. (2020). The Open Logic Text.
https://openlogicproject.org/
OpenAI. (2023). GPT-4 Technical Report. https://cdn.openai.com/papers/gpt-4.pdf
Oppenheim, P. & Putnam, H. (1958). Unity of
science as a working hypothesis. In H. F. et al. (Ed.), Minnesota Studies in the Philosophy of Science, Vol.
II. Minnesota University Press.
Opper, M. (2001). Learning to generalize.
Frontiers of Life, 3, 763–775.
Opper, M. & Kinzel, W. (1996). Statistical
mechanics of generalization. In Models
of Neural Networks III: Association, Generalization, and
Representation (pp. 151–209). Springer New
York. https://gwern.net/doc/ai/nn/1996-opper.pdf
Ord, T. (2024). Bounds on the rates of growth and
convergence of all physical processes. https://arxiv.org/abs/2410.10928
Ostrik, V. (2004). Tensor categories (after
Deligne). https://arxiv.org/abs/math/0401347
Otsuka, J. (2023). Thinking About Statistics: The
Philosophical Foundations. Routledge.
Ouyang, L. et al. (2022). Training language models
to follow instructions with human feedback. https://arxiv.org/abs/2203.02155
Overgaard, S., Gilbert, P., & Burwood, S. (2013). What is philosophy? In An
Introduction to Metaphilosophy (pp. 17–44). Cambridge
University Press.
Palmer, T. N. (1995). A local deterministic model
of quantum spin measurement. Proceedings of the Royal Society
of London A, 451, 585–608. https://arxiv.org/abs/quant-ph/9505025
———. (2009). The invariant set postulate: A new
geometric framework for the foundations of quantum theory and the role
played by gravity. https://arxiv.org/abs/0812.1148
———. (2016). Invariant set theory. https://arxiv.org/abs/1605.01051
Pandey, R. (2024). gzip predicts data-dependent
scaling laws. https://arxiv.org/abs/2405.16684
Papineau, D. (2007). Naturalism. Stanford Encyclopedia
of Philosophy. https://plato.stanford.edu/entries/naturalism/
———. (2012). Philosophical Devices: Proofs,
Probabilities, Possibilities, and Sets. Oxford
University Press.
Parekh, B. (2006). Rethinking Multiculturalism:
Cultural Diversity and Political Theory (2nd ed.).
Palgrave MacMillan.
Parfit, D. (1984). Reasons and
Pearsons. Clarendon Press.
Park, N. & Kim, S. (2022). How do vision
transformers work? https://arxiv.org/abs/2202.06709
Park, S. (2021). Embracing Scientific Realism.
Springer.
Parkes, G. (2011). Heidegger and Japanese fascism:
An unsubstantiated connection. In Japanese and Continental Philosophy: Conversations with
the Kyoto School (pp. 247–265). Indiana University
Press.
Passmore, J. (1967). Logical positivism. In
P. Edwards (Ed.), The Encyclopedia of
Philosophy, Volume 5 (pp. 52–57). New York:
Macmillan.
Patel, R. & Pavlick, E. (2022). Mapping
language models to grounded conceptual spaces. International
Conference on Learning Representations, 2022.
https://openreview.net/pdf?id=gJcEM8sxHK
Pati, J. C. & Salam, A. (1974). Lepton number
as the fourth color. Physical Review D,
10, 275–289. https://pdfs.semanticscholar.org/21fb/f9d49acf3e3f07098ca686ae4058c38dbd03.pdf
Patterson, G. (2007). Jean Perrin and the triumph
of the atomic doctrine. Endeavour,
31, 50–53.
Paul, L. A. (2012). Metaphysics as modeling: The
handmaiden’s tale. Philosophical Studies,
160, 1–29.
Pauli, W. (1941). Relativistic field theories of
elementary particles. Reviews of Modern Physics,
13, 203–232.
Pearl, J. (2009). Causal inference in statistics:
An overview. Statistics Surveys,
3, 96–146. https://projecteuclid.org/journals/statistics-surveys/volume-3/issue-none/Causal-inference-in-statistics-An-overview/10.1214/09-SS057.pdf
———. (2018). The Book of Why: The new science
of cause and effect. Basic Books.
Pearson, K. (1900). On the criterion that a given
system of deviations from the probable in the case of a correlated
system of variables is such that it can be reasonably supposed to have
arisen from random sampling. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science,
50, 157–175.
Peirce, C. S. (1883). Studies in
Logic. Boston: Little, Brown, and Co.
———. (1923). Chance, Love and
Logic. New York: Harcourt, Brace & Co.
Peng, B. et al. (2023). RWKV: Reinventing RNNs for
the Transformer Era. https://arxiv.org/abs/2305.13048
Penington, G. (2019). Entanglement wedge
reconstruction and the information paradox. https://arxiv.org/abs/1905.08255
Penrose, R. (1971). Angular momentum: an approach
to combinatorial spacetime. In T. Bastin (Ed.), Quantum Theory and Beyond (pp. 151–180).
Cambridge University Press. https://math.ucr.edu/home/baez/penrose/
Percacci, R. (2024). Non-Perturbative Quantum
Field Theory: An Introduction to Topological and Semiclassical
Methods. SISSA Medialab. https://library.oapen.org/bitstream/handle/20.500.12657/96025/9788898587056.pdf
Perone, C. S. (2018). NLP word representations and
the Wittgenstein philosophy of language. http://blog.christianperone.com/2018/05/nlp-word-representations-and-the-wittgenstein-philosophy-of-language/
Perrault, R. et al. (2025). Artificial Intelligence Index Report
2025. Human-Centered Artificial Intelligence, Stanford
University. https://hai-production.s3.amazonaws.com/files/hai_ai_index_report_2025.pdf
Perrin, A. J. (2017). Stop blaming postmodernism
for post-truth politics. The Chronicle of Higher
Education. August 4, 2017. http://www.chronicle.com/article/Stop-Blaming-Postmodernism-for/240845
Perrin, J. (1913). Les Atomes. Paris:
Libraire Felix Alcan.
Peskin, M. E. (1994). Spin, mass, and
symmetry. https://arxiv.org/abs/hep-ph/9405255
Peskin, M. E. & Schroeder, D. V. (1995). An
Introduction to Quantum Field Theory. Westview
Press.
Pessa, E. (2009). The concept of particle in
quantum field theory. https://arxiv.org/abs/0907.0178
Peters, J., Janzing, D., & Scholkopf, B. (2017). Elements of Causal Inference. MIT
Press.
Peterson, J. B. (1999). Maps of
Meaning. Routledge.
Pettigrew, R. & Weisberg, J. (2019). The
Open Handbook of Formal Epistemology.
PhilPapers. https://jonathanweisberg.org/pdf/open-handbook-of-formal-epistemology.pdf
Pettit, P. (1983). The possibility of aesthetic
realism. In E. Schaper (Ed.), Pleasure,
Preference and Value: Studies in philosophical aesthetics.
Cambridge University Press.
Phillips, P. W. (2023). Fifty years of Wilsonian
renormalization and counting. https://arxiv.org/abs/2309.02484
Phuong, M. & Hutter, M. (2022). Formal
algorithms for transformers. https://arxiv.org/abs/2207.09238
Piantadosi, S. T. (2023). Modern language models
refute Chomsky’s approach to language. https://lingbuzz.net/lingbuzz/007180
Pierre Auger Collaboration. (2007). Correlation of
the highest-energy cosmic rays with nearby extragalactic objects.
Science, 318, 938–943.
———. (2010). Measurement of the depth of maximum of
extensive air showers above 1018 eV. Physical
Review Letters, 104, 091101.
———. (2020a). Features of the energy spectrum of
cosmic rays above 2.5 × 1018
eV using the Pierre Auger Observatory. Physical Review
Letters, 125, 121106. https://arxiv.org/abs/2008.06488
———. (2020b). Measurement of the cosmic ray energy
spectrum above 2.5 × 1018 eV
using the Pierre Auger Observatory. Physical Review D,
102, 062005. https://arxiv.org/abs/2008.06486
Pigliucci, M. (2010). Nonsense on Stilts: How
to Tell Science From Bunk. Chicago University
Press.
———. (2017). How to be a Stoic: Using Ancient
Philosophy to Live a Modern Life. Basic Books.
———. (2019). Epic battles in practical ethics:
Stoicism vs Epicureanism. https://medium.com/stoicism-philosophy-as-a-way-of-life/epic-battles-in-practical-ethics-stoicism-vs-epicureanism-dc124e8dc9
Pigliucci, M. & Boudry, M. (2013). Philosophy of Pseudoscience: Reconsidering the
Demarcation Problem. The University of Chicago
Press.
Pluckrose, H. (2016). Why I no longer identify as a
feminist. Areo. December 26, 2016. https://areomagazine.com/2016/12/29/why-i-no-longer-identify-as-a-feminist/
———. (2017). How French
“intellectuals” ruined the west: Postmodernism and its
impact, explained. Areo. March 27, 2017. https://areomagazine.com/2017/03/27/how-french-intellectuals-ruined-the-west-postmodernism-and-its-impact-explained/
Poincaré, H. (1913). The Foundations of
Science: Science and hypothesis, the value of science, science and
method. (G. B. Halstead, Trans.). Cambridge University
Press. (Originally published in 1905).
Polyakov, A. M. (2008). From quarks to
strings. https://arxiv.org/abs/0812.0183
Pomerantsev, P. (2016). Why we’re post-fact.
Granta. July 20, 2016. https://granta.com/why-were-post-fact/
Ponsen, M., De Jong, S., & Lanctot, M. (2011). Computing approximate Nash equilibria and robust
best-responses using sampling. Journal of Artificial
Intelligence Research, 42, 575–605. https://arxiv.org/abs/1401.4591
Popper, K. R. (1952). The nature of philosophical
problems and their roots in science. The British Journal for
the Philosophy of Science, 3, 124–156. https://www.jstor.org/stable/685553
———. (1953). A note on Berkeley as precursor of
Mach. The British Journal for the Philosophy of Science,
4, 26–36.
———. (1963). Conjectures and Refutations: The
Growth of Scientific Knowledge. Routledge.
———. (2002). The Logic of Scientific
Discovery. Routledge. (Originally published in
1934 as Logik der Forschung and first published in English in
1959).
Popper, K. & Miller, D. (1983). A proof of the
impossibility of inductive probability. Nature,
302, 687–688. https://www.nature.com/articles/302687a0
Portmore, D. (2011). Commonsense Consequentialism.
Oxford University Press.
Poskett, J. (2022). Horizons: The Global
Origins of Modern Science. Mariner Books.
Post, E. L. (1921). Introduction to the general
theory of elementary propositions. American Journal of
Mathematics, 43, 163–185.
Potochnik, A. (2011). A Neurathian conception of
the unity of science. Erkenntnis,
74, 305–319.
Prado, I. (2006). Ionian enchantment: A brief
history of scientific naturalism. http://www.naturalism.org/worldview-naturalism/history-of-naturalism
Prasetya, Y. (2021). Methodological naturalism and
scientific success: Lessons from the scientific realism debate.
European Journal for Philosophy of Religion. (forthcoming). https://philpapers.org/rec/PRAMNA
Prescod-Weinstein, C. (2017). Scientists must
challenge what makes studies scientific. American
Scientist. August 15, 2017. https://www.americanscientist.org/blog/macroscope/scientists-must-challenge-what-makes-studies-scientific
Preskill, J. (2013). We are all Wilsonians
now. https://quantumfrontiers.com/2013/06/18/we-are-all-wilsonians-now/
———. (2018). Quantum computing in the NISQ era and
beyond. https://arxiv.org/abs/1801.00862
———. (2021). Quantum computing 40 years
later. https://arxiv.org/abs/2106.10522
Preston, A. (2005). George Edward Moore. Internet
Encyclopedia of Philosophy. http://www.iep.utm.edu/moore/
Priest, G. (1998). What is so bad about
contradictions? Journal of Philosophy,
95, 410–426.
———. (2020). Philosophy and its history: An essay
in the philosophy of philosophy. Analytic Philosophy,
61, 297–303.
Prinz, J. (2011). Against empathy. The
Southern Journal of Philosophy, 49, 214–233.
Pritchard, D. (2004). Contemporary
skepticism. Internet Encyclopedia of Philosophy. http://www.iep.utm.edu/skepcont/
Proietti, M. et al. (2019). Experimental test of
local observer independence. Science Advances,
5, 9832. https://arxiv.org/abs/1902.05080
Psillos, S. (1999). Scientific Realism: How
science tracks truth. Routledge.
———. (2001). Is structural realism possible?
Philosophy of Science, 68, S13–S24.
———. (2011). On Reichenbach’s argument for
scientific realism. Synthese, 181,
23–40.
Pusey, M. F., Barrett, J., & Rudolph, T. (2012). On the reality of the quantum state. Nature
Physics, 8, 476. https://arxiv.org/abs/1111.3328
Putnam, H. (1971). Philosophy of
Logic. New York: Harper & Row.
———. (1973). Meaning and reference. The
Journal of Philosophy, 70, 699–711. https://www.jstor.org/stable/2025079
———. (1975a). A philosopher looks at quantum
mechanics. In Mathematics, Matter and
Method. Philosophical Papers, vol. 1 (pp. 130–158).
Cambridge University Press. (Originally published in 1965).
———. (1975b). Mathematics, Matter, and
Method. Cambridge University Press.
———. (1975c). The meaning of "meaning". In
Mind, Language and Reality. Philosophical
Papers, vol. 2 (pp. 215–271). Cambridge University
Press.
———. (1975d). What is mathematical truth?
Historia Mathematica, 2, 529–543.
———. (1981). Reason, Truth, and
History. Cambridge University Press.
———. (1997). A half century of philosophy, viewed
from within. Daedalus, 126,
175–208.
———. (2004). The Collapse of the Fact/Value
Dichotomy and Other Essays. Harvard University
Press.
———. (2005). A philosopher looks at quantum
mechanics (again)*. *The British Journal for the Philosophy
of Science*, 56, 615–634. https://www.jstor.org/stable/3541860
———. (2016). Naturalism, Realism, and
Normativity. Harvard University Press.
Quine, W. V. O. (1936). Truth by convention.
In Philosophical Essays for Alfred North
Whitehead (pp. 90–124). Longmans, Green, &
Co.
———. (1948). On what there is. Review of
Metaphysics, 2, 21–38.
———. (1951). Two dogmas of empiricism.
The Philosophical Review, 60, 20–43.
———. (1960a). Carnap and logical truth.
Synthese, 12, 350–374.
———. (1960b). Word and Object.
MIT Press.
———. (1963). On simple theories of a complex
world. Synthese, 15, 103–106.
———. (1969). Ontological Relativity and Other
Essays. Columbia University Press.
———. (1970). Homage to Rudolf Carnap.
PSA: Proceedings of the Biennial Meeting of the Philosophy of
Science Association, 1970. XI–LXVI.
———. (1981a). Reply to Stroud. Midwest
Studies in Philosophy, 6, 473–476.
———. (1981b). Theories and Things.
Harvard University Press.
———. (1986). Philosophy of Logic
(2nd ed.). Harvard University Press.
———. (1991). Two dogmas in retrospect.
Canadian Journal of Philosophy, 21,
265–274.
Quine, W. V. O. & Carnap, R. (1990). Dear
Carnap, Dear Van: The Quine-Carnap Correspondence and Related
Work. (R. Creath, Ed.). University of California
Press.
Quine, W. V. O., Schilpp, P. A., & Hahn, L. E. (1986). The Philosophy of W.V. Quine. Open
Court.
Raatikainen, P. (2020). Gödel’s incompleteness theorems.
Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/entries/goedel-incompleteness/
Radford, A. et al. (2019). Language models are
unsupervised multitask learners. (Paper on the GPT-2 model by
OpenAI). https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018).
Improving language understanding by generative
pre-training. (Paper on the GPT model by OpenAI). https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
Rae, J.W. et al. (2022). Scaling language models:
Methods, analysis & insights from training Gopher. https://arxiv.org/abs/2112.11446
Raffel, C. et al. (2019). Exploring the limits of
transfer learning with a unified text-to-text transformer. https://arxiv.org/abs/1910.10683
Railton, P. (1986). Moral realism.
Philosophical Review, 95, 163–207.
Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2017a). Physics informed deep learning (Part I): Data-driven
solutions of nonlinear partial differential equations. https://arxiv.org/abs/1711.10561
———. (2017b). Physics informed deep learning (Part
II): Data-driven discovery of nonlinear partial differential
equations. https://arxiv.org/abs/1711.10566
Raleigh, T. (2023). The emptiness of
naturalism. https://philpapers.org/archive/RALTEO-3.pdf
Raman, V. V. & Forman, P. (1969). Why was it
Schrödinger who developed de Broglie’s
ideas? Historical Studies in the Physical Sciences,
1, 291–314. https://www.jstor.org/stable/27757299
Ramond, P. (1976). Introduction to exceptional Lie
groups and algebras. CALT-68-577. https://inspirehep.net/literature/111550
Ramsey, F. P. (1923). Review of Tractatus
Logico-Philosophicus by L. Wittgenstein & B. Russell.
Mind, 32, 465–478.
———. (1925). Universals. Mind,
34, 401–417.
———. (1926). Foundations of mathematics.
Proceedings of the London Mathematical Society,
25, 338–384. https://gwern.net/doc/math/1926-ramsey-2.pdf
———. (1927). Facts and propositions.
Proceedings of the Aristotelian Society, Supplementary,
7, 153–170. https://web.archive.org/web/20190120155923/https://www.aristoteliansociety.org.uk/pdf/ramsey.pdf
Rao, C. R. (1945). Information and the accuracy
attainable in the estimation of statistical parameters.
Bulletin of the Calcutta Mathematical Society,
37, 81–91.
———. (1947). Minimum variance and the estimation of
several parameters. In Mathematical
Proceedings of the Cambridge Philosophical Society.
43, 280–283. Cambridge University Press.
———. (1997). Statisitcs and Truth: Putting
Chance to Work (2nd ed.). World Scientific.
Rao, C. R. & Lovric, M. M. (2016). Testing
point null hypothesis of a normal mean and the truth: 21st century
perspective. Journal of Modern Applied Statistical
Methods, 15, 2–21. http://digitalcommons.wayne.edu/jmasm/vol15/iss2/3
Rathmanner, S. & Hutter, M. (2011). A
philosophical treatise of universal induction. Entropy,
13, 1076–1136. https://www.mdpi.com/1099-4300/13/6/1076
Raup, D. M. & Sepkoski, J. J. (1982). Mass
extinctions in the marine fossil record. Science,
215, 1501–1503.
Rawls, J. (1999). A Theory of
Justice (2nd ed.). Harvard University Press.
(First edition published in 1971).
Rea, M. C. (2006). Naturalism and moral
realism. In Knowledge and
Reality (pp. 215–241). Dordrecht: Springer. https://philarchive.org/archive/REANAM-4
Read, A. L. (2002). Presentation of search results:
the CLs technique. Journal of Physics G: Nuclear and Particle
Physics, 28, 2693. https://indico.cern.ch/event/398949/attachments/799330/1095613/The_CLs_Technique.pdf
Reck, E. H. (2005). Frege’s influence on
Wittgenstein: Reversing metaphysics via the context principle. In
Gottlob Frege: Critical Assessments of Leading
Philosophers, Vol. I (pp. 241–289). London:
Routledge. https://philpapers.org/archive/RECFIO.pdf
Rédei, M. (1996). Why John von Neumann did not like
the Hilbert space formalism of quantum mechanics (and what he liked
instead). Studies in History and Philosophy of Science Part
B, 27, 493–510. https://doi.org/10.1016/S1355-2198(96)00017-2
Redhead, M. (1975). Symmetry in intertheory
relations. Synthese, 32, 77–112.
———. (1982). Quantum field theory for
philosophers. PSA: Proceedings of the Biennial Meeting of the
Philosophy of Science Association, 1982,
57–99.
———. (1988). A philosopher looks at quantum field
theory. In H. R. Brown & R. Harré (Eds.), Philosophical Foundations of Quantum Field
Theory (pp. 9–24). Oxford University Press.
———. (1999). Quantum field theory and the
philosopher. In T. Y. Cao (Ed.), Conceptual Foundations of Quantum Field
Theory (pp. 34–40). Cambridge University Press.
———. (2001). The intelligibility of the
universe. Royal Institute of Philosophy Supplements,
48, 73–90.
Reece, R. (2007). Quantum field theory: An
introduction. http://rreece.github.io/publications/pdf/2007.Reece.Quantum-Field-Theory-An-Introduction.pdf
Reichenbach, H. (1936). Logistic empiricism in
Germany and the present state of its problems. The Journal of
Philosophy, 33, 141–160.
———. (1938). Experience and
Prediction. University of Chicago Press. https://philpapers.org/archive/REIEAP-2.pdf
———. (1940). On the justification of
induction. The Journal of Philosophy,
37, 97–103.
———. (1944). Philosophic Foundations of Quantum
Mechanics. Berkeley, CA: University of California
Press.
———. (1968). The Rise of Scientific
Philosophy. University of California Press.
(Originally published in 1951).
Reichert, P. & Lazarovici, D. (2022). The point
of primitive ontology. Foundations of Physics,
52, 1–18. http://philsci-archive.pitt.edu/21425/1/The_point_of_primitive_ontology.pdf
Reid, C. (1996). Hilbert. Copernicus.
———. (1998). Neyman. Springer-Verlag.
Reimann, M.W. et al. (2017). Cliques of neurons
bound into cavities provide a missing link between structure and
function. Frontiers in Computational Neuroscience,
11. https://www.frontiersin.org/articles/10.3389/fncom.2017.00048/full
Rescher, N. (2006). The Berlin School of logical
empiricism and its legacy. Erkenntnis,
64, 281–304.
Resnik, M. D. (1987). Choices: An Introduction
to Decision Theory. University of Minnesota
Press.
Rice, J. A. (2007). Mathematical Statistics and
Data Analysis (3rd ed.). Thomson.
Richards, J. R. (1980). The Sceptical Feminist: A
Philosophical Enquiry. Routledge.
———. (1995). Why feminist epistemology isn’t (and
the implications for feminist jurisprudence). Legal
Theory, 1, 365–400.
Richardson, A. (2023). Logical Empricism as
Scientific Philosophy. Cambridge University
Press. https://doi.org/10.1017/9781009471497
Richardson, A. & Tuboly, A. T. (2024). Interpreting
Carnap: Critical Essays. Cambridge University
Press.
Richter, D. J. (2004). Ludwig Wittgenstein.
International Encyclopedia of Philosophy. https://iep.utm.edu/wittgens/
Ricks, T. E. (2006). Fiasco. Armed Forces Journal.
http://armedforcesjournal.com/fiasco/
Riepe, D. (1961). The Naturalistic Traddition
in Indian Thought. University of Washington
Press.
Roberts, D. A. (2021). Why is AI hard and physics
simple? https://arxiv.org/abs/2104.00008
Roberts, D. A., Yaida, S., & Hanin, B. (2021). The Principles of Deep Learning Theory: An Effective
Theory Approach to Understanding Neural Networks.
Cambridge University Press. https://deeplearningtheory.com/PDLT.pdf
Robins, J. M. & Wasserman, L. (1999). On the
impossibility of inferring causation from association without background
knowledge. In C. Glymour & G. Cooper (Eds.), Computation, Causation, and Discovery (pp.
305–321). AAAI & MIT Press.
Rodin, A. (2012). Axiomatic method and category
theory. https://arxiv.org/abs/1210.1478
Romero, G. E. (2015). On the ontology of spacetime:
Substantivalism, relationism, eternalism, and emergence.
Foundations of Science, 22, 141–159.
Ronen, M., Finder, S. E., & Freifeld, O. (2022). DeepDPM: Deep clustering with an unknown number of
clusters. https://arxiv.org/abs/2203.14309
Roosevelt, T. (1910). Citizenship in a
republic. https://www.theodorerooseveltcenter.org/Learn-About-TR/TR-Encyclopedia/Culture-and-Society/Man-in-the-Arena.aspx
Rorty, R. (1967). The Linguist Turn: Recent
Essays in Philosophical Method. University of Chicago
Press.
———. (1979). Philosophy and the Mirror of
Nature. Princeton University Press.
———. (1989). Contingency, Irony, and
Solidarity. Cambridge University Press.
———. (1993). Wittgenstein, Heidegger, and the
reification of language. In C. B. Guignonn (Ed.), The Cambridge Companion to Heidegger (pp.
337–357). Cambridge University Press.
———. (1998). Achieving Our Country. Harvard
University Press.
Rosaler, J. (2019). Reduction as an a posteriori
relation. The British Journal for the Philosophy of
Science, 70, 269–299. https://www.journals.uchicago.edu/doi/10.1093/bjps/axx026
———. (2022). Dogmas of effective field theory:
Scheme dependence, fundamental parameters, and the many faces of the
Higgs naturalness principle. Foundations of Physics,
52, 1–32. https://link.springer.com/article/10.1007/s10701-021-00510-4
Rose, C. & Sagan, C. (1996). Carl Sagan
discusses Demon Haunted World with Charlie Rose. The
Charlie Rose Show. TV show that aired May 27, 1996. https://www.youtube.com/watch?v=U8HEwO-2L4w
Rosenberg, A. (2011a). The Atheist’s Guide to
Reality. Norton.
———. (2011b). Why I am a naturalist. New
York Times. September 17, 2011. https://opinionator.blogs.nytimes.com/2011/09/17/why-i-am-a-naturalist/
Rosenblatt, F. (1961). Principles of
Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms. Spartan.
Ross, D. (2000). Dennett’s Philosophy: A
comprehensive assessment. MIT Press.
———. (2005). Economic Theory and Cognitive
Science: Microexplanation. Bradford.
Ross, D., Ladyman, J., & Kincaid, H. (2013). Scientific
Metaphysics. Oxford University Press.
Rossberg, M. (2004). First-order logic,
second-order logic, and completeness. In V. F. H. et al. (Ed.),
First-Order Logic Revisited. Berlin:
Logos-Verlag. http://logic.amu.edu.pl/images/4/46/Completenessrossberg.pdf
Roughgarden, T. (2016). Twenty Lectures on
Algorithmic Game Theory. Cambridge University
Press.
Rovelli, C. (2003). A dialog on quantum
gravity. https://arxiv.org/abs/hep-th/0310077
———. (2007). Anaximander. Westholme.
Royall, R. (1997). Statistical Evidence: A
likelihood paradigm. CRC Press.
Rozeboom, W. W. (1960). The fallacy of the
null-hypothesis significance test. Psychological
Bulletin, 57, 416.
Rubbia, C. (1984). Experimental observation of the
intermediate vector bosons W+, W−, and Z0. Nobel lecture,
December 8, 1984. https://www.nobelprize.org/uploads/2018/06/rubbia-lecture.pdf
Rubin, D. B. (1974). Estimating causal effects of
treatments in randomized and nonrandomized studies. Journal
of Educational Psychology, 66, 688. https://psycnet.apa.org/fulltext/1975-06502-001.pdf
Ruetsche, L. (2002). Interpreting quantum field
theory. Philosophy of Science, 69,
348–378.
———. (2018). Renormalization group realism: The
ascent of pessimism. Philosophy of Science,
85, 1176–1189. https://www.jstor.org/stable/26627776
Ruja, H. (1957). Are naturalists
materialists? Philosophy and Phenomenological Research,
17, 555–557.
———. (1961). The present status of the
verifiability criterion. Philosophy and Phenomenological
Research, 22, 216–222.
Rukeyser, M. (1976). Islands. In The
Gates. McGraw-Hill. http://murielrukeyser.emuenglish.org/2018/12/07/islands/
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating
errors. Nature, 323, 533–536. https://www.nature.com/articles/323533a0.pdf
Russell, B. (1905). On denoting.
Mind, 14, 479–493. https://www.finophd.eu/wp-content/uploads/2018/11/russell_on_denoting.pdf
———. (1908). Mathematical logic as based on the
theory of types. American Journal of Mathematics,
30, 222–262. https://www.jstor.org/stable/2369948
———. (1912). The Problems of
Philosophy. Oxford University Press. (with
Introduction by John Perry 1997).
———. (1919). The philosophy of logical atomism:
Lectures 7-8. The Monist, 29,
345–380. https://www.jstor.org/stable/pdf/27900748.pdf
———. (1943). The future of pacifism. The
American Scholar, 13, 7–13. https://www.jstor.org/stable/41204635
———. (1945). A History of Western
Philosophy. Simon & Schuster.
———. (1989). Wisdom of the West.
Crescent Books. (Originally published in 1959).
———. (1992). The Analysis of
Matter. Routledge. (Originally published in
1927).
———. (2004a). History of Western
Philosophy. Routledge. (Originally published in
1946).
———. (2004b). Sceptical Essays.
Routledge. (Originally published in 1928).
———. (2004c). Why I Am Not a
Christian. Routledge. (Originally published in
1927).
———. (2009). Human Knowledge: Its Scope and
Limits. Routledge. (Originally published in
1923).
Russell, G. (2008). Truth in Virtue of Meaning:
A defence of the analytic/synthetic distinction.
Oxford University Press.
———. (2015). The justification of the basic laws of
logic. Journal of Philosophical Logic,
44, 793–803.
———. (2020). Logic isn’t normative.
Inquiry, 63, 371–388.
———. (2021). How to prove Hume’s law.
Journal of Philosophical Logic. (forthcoming).
———. (2023). Barriers to Entailment: Hume’s law
& other limits on logical consequence. Oxford
University Press.
Russell, S. & Norvig, P. (1995). Artificial
Intelligence: A modern approach (3rd ed.).
Pearson.
Rutt, R. (2002). The Book of Changes
(Zhouyi). Routledge Curzon.
Ryan, J. A. (1996). Leibniz’ binary system and Shao
Yong’s Yijing. Philosophy East and West,
46, 59.
Ryden, B. (2003). Introduction to
Cosmology. Addison Wesley.
Sabra, A. I. (1978). An eleventh-century refutation
of Ptolemy’s planetary theory. Studia Copernicana,
16, 117–131.
Sachs, C. B. (2011). What is to be Overcome?
Nietzsche, Carnap, and modernism as the overcoming of
metaphysics. History of Philosophy Quarterly,
28, 303–318. https://www.jstor.org/stable/23032343
Sadakata, A. (1997). Buddhist Cosmology:
Philosophy and Origins. (G. Sekimori, Trans.). Tokyo:
Kōsei Publishing.
Sagan, C. (1997). The Demon-Haunted World:
Science as a Candle in the Dark. London:
Headline. (Originally published in 1995).
Salam, A. & Ward, J. C. (1964a). Electromagnetic and weak interactions. Physics
Letters, 13, 168–171.
———. (1964b). Gauge theory of elementary
interactions. Physical Review,
136, 763–768.
Salmon, W. C. (1953). The uniformity of
nature. Philosophy and Phenomenological Research,
14, 39–48.
———. (1963). On vindicating induction.
Philosophy of Science, 30, 252–261.
———. (1966). The Foundations of Scientific
Inference. University of Pittsburgh Press.
———. (1967). Carnap’s inductive logic.
The Journal of Philosophy, 64, 725–739.
———. (1991). Hans Reichenbach’s vindication of
induction. Erkenntnis, 35, 99–122.
Salsburg, D. (2001). The Lady Tasting Tea.
Holt.
Sandberg, A., Drexler, E., & Ord, T. (2018). Dissolving the Fermi paradox. https://arxiv.org/abs/1806.02404
Sankey, H. (1997). Rationality, Relativism, and
Incommensurability. Ashgate.
———. (2001). Scientific realism: An elaboration and
a defence. Theoria, 98, 35–54.
———. (2008). Scientific Realism and the
Rationality of Science. Ashgate.
———. (2015). Realism, progress, and the historical
turn. Foundations of Science, 22,
201–214.
Sartre, J. P. (1964). Nausea. (L. Alexander,
Trans.). New York: New Directions Publishing Co.
(Originally published in 1938 as La Nausée).
———. (2007). Existentialism is a
Humanism. (C. Macomber, Trans.). Yale University
Press. (Originally published in 1948 as L’Existentialisme est
un Humanisme).
Sartwell, C. (2015). Philosophy returns to the real
world. New York Times. April 13, 2015. http://opinionator.blogs.nytimes.com/2015/04/13/philosophy-returns-to-the-real-world/
Saunders, S. (2021). Branch-counting in the Everett
interpretation of quantum mechanics. Proceedings of the Royal
Society A, 477, 20210600. https://royalsocietypublishing.org/doi/10.1098/rspa.2021.0600
Savage, L. J. (1954). The Foundations of
Statistics. John Wiley & Sons.
Scanlon, T. M. (1998). What We Owe to Each
Other. Harvard University Press.
Scardapane, S. (2024). Alice’s Adventures in a
Differentiable Wonderland, Vol. I: A Tour of the Land. https://arxiv.org/abs/2404.17625
Schaeffer, R. et al. (2023). Double descent
demystified: Identifying, interpreting & ablating the sources of a
deep learning puzzle. https://arxiv.org/abs/2303.14151
Schlick, M. (1936). Meaning and
verification. The Philosophical Review,
45, 339–369.
———. (1948). Positivism and realism.
Synthese, 7, 478–505. (D. Rynin, Trans.
Originally published in 1933 in Erkenntnis, 3.).
———. (1959). The turning point in
philosophy. (D. Rynin, Trans. Originally published in 1933 as Die
Wende Der Philosophie. Erkenntnis, 1, 4–11.). http://zolaist.org/wiki/images/7/79/The_Turning_Point_in_Philosophy.pdf
———. (1974). General Theory of
Knowledge. (A. E. Blumberg, Trans.).
Springer-Verlag. (Originally published in German in 1921 as
Allgemeine Erkenntnislehre).
Schlingemann, D. (1998). From euclidean field
theory to quantum field theory. https://arxiv.org/abs/hep-th/9802035
Schlosshauer, M. (2005). Decoherence, the
measurement problem, and interpretations of quantum mechanics.
Reviews of Modern Physics, 76, 1267–1305.
https://arxiv.org/abs/quant-ph/0312059
Schlosshauer, M. & Fine, A. (2012). Implications of the Pusey-Barrett-Rudolph quantum no-go
theorem. Physical Review Letters,
108, 260404. https://arxiv.org/abs/1203.4779
Schmid, M. et al. (2019). Variance reduction in
Monte Carlo counterfactual regret minimization (VR-MCCFR) for extensive
form games using baselines. https://ojs.aaai.org/index.php/AAAI/article/view/4048/3926
———. (2021). Player of games. https://arxiv.org/abs/2112.03178
Schönberg, M. (1954). On the hydrodynamical model
of the quantum mechanics. Il Nuovo Cimento,
12, 103–133.
Schopenhauer, A. (2014a). Essays and
Aphorisms. (R. J. Hollingdale, Trans.).
Penguin.
———. (2014b). The World as Will and
Representation, Vol. 1 and 2. (J. Norman, A. Welchman, &
C. Janaway, Eds.). Cambridge University Press. (Originally
published as Die Welt als Wille und Vorstellung, Vol. 1 in
1818, Vol. 2 in 1844).
———. (2015). On the Fourfold Root of the
Principle of Sufficient Reason and Other Writings. (D. E.
Cartwright, E. E. Erdmann, & C. Janaway, Eds.). Cambridge
University Press. (Originally published as Schopenhauer’s
doctoral dissertation in 1813).
Schreiber, U. (2016a). Higher prequantum
geometry. https://arxiv.org/abs/1601.05956
———. (2016b). Learn about supersymmetry and
Deligne’s theorem. https://www.physicsforums.com/insights/supersymmetry-delignes-theorem/
———. (2020). Differential cohomology in a cohesive
∞-topos. https://ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos
Schrödinger, E. (1935). Discussion of probability
relations between separated systems. Mathematical Proceedings
of the Cambridge Philosophical Society, 31,
555–563.
———. (1936). Probability relations between
separated systems. Mathematical Proceedings of the Cambridge
Philosophical Society, 32, 446–452.
———. (1944). What Is Life? The Physical Aspect
of the Living Cell. Cambridge University Press.
———. (1952a). Are there quantum jumps? Part
I. The British Journal for the Philosophy of Science,
3, 109–123. https://www.jstor.org/stable/685552
———. (1952b). Are there quantum jumps? Part
II. The British Journal for the Philosophy of Science,
3, 109–123. https://www.jstor.org/stable/685266
Schroeren, D. (2021). Symmetry fundamentalism in
quantum mechanics. Philosophical Studies. https://link.springer.com/article/10.1007%2Fs11098-021-01634-z
Schuldenfrei, R. (1972). Quine in
perspective. The Journal of Philosophy,
69, 5–16.
Schumacher, E. F. (1977). A Guide for the
Perplexed. Harper & Row.
Schumm, B. A. (2004). Deep Down Things.
Johns Hopkins University Press.
Schurz, G. (1997). The Is/Ought Problem: An
Investigation in Philosophical Logic. Dortrecht:
Kluwer.
———. (2010a). Comments on Restall, Russell, and
Vranas. In C. Pigden (Ed.), Hume, Is and
Ought: New Essays (pp. 268–271). Palgrave
MacMillan.
———. (2010b). Non-trivial versions of Hume’s
is-ought thesis. In C. Pigden (Ed.), Hume, Is and Ought: New Essays (pp. 198–216).
Palgrave MacMillan.
———. (2019). Hume’s Problem Solved: The
optimality of meta-induction. MIT Press.
Schwartz, M. D. (2014). Quantum Field Theory
and the Standard Model. Cambridge University
Press.
Schweber, S. S. (1961). An Introduction to
Relativistic Quantum Field Theory. Harper &
Row.
———. (1993). The ebb and flow of of
reductionism. In L. M. Brown (Ed.), Renormalization: From Lorentz to Landau (and
Beyond) (pp. 155–166). Springer-Verlag.
Schwichtenberg, J. (2015). Physics from
Symmetry. Springer.
Scruton, R. (2015). Scientism and the
humanities. In R. N. Williams & D. N. Robinson (Eds.),
Scientism: The New Orthodoxy (pp. 131–146).
Bloomsbury.
———. (2018). Why beauty matters. The
Monist, 101, 9–16.
Sebens, C. T. (2019). How electrons spin.
Studies in History and Philosophy of Science Part B,
68, 40–50. https://arxiv.org/abs/1806.01121
Seidewitz, E. (2017). Avoiding Haag’s theorem with
parameterized quantum field theory. Foundations of
Physics, 47, 355–374. https://arxiv.org/abs/1501.05658
Seifert, V. A. (2024). The chemical bond is a real
pattern. Philosophy of Science. https://philpapers.org/archive/SEITCB-2.pdf
Sellars, W. (1963a). Empiricism and philosophy of
mind. In Science, Perception, and
Reality (pp. 127–196). Atascadero, CA: Ridgeview
Publishing Co.
———. (1963b). Science, Perception, and
Reality. Atascadero, CA: Ridgeview Publishing
Co.
Sen, A. (1970). The impossibility of a Paretian
Liberal. Journal of Political Economy,
78, 152–157. https://dash.harvard.edu/bitstream/handle/1/3612779/Sen_ImpossibilityParetian.pdf
———. (2009). The Idea of Justice.
Harvard University Press.
Seneca. (1997). On the Shortness of
Life. (C. D. N. Costa, Trans.). Penguin Books.
(Originally written in 49 CE and titled De Brevitate Vitae).
Sextus Empiricus. (1933). Outlines of
Pyrrhonism. (R. G. Bury, Trans.). London: W.
Heinemann.
Shalev-Shwarz, S. & Ben-David, S. (2014). Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press. https://www.cs.huji.ac.il/w~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
Shapiro, S. (1991). Foundations without
Foundationalism: A Case for Second-Order Logic. Oxford
University Press.
———. (2000). Thinking about Mathematics: The
Philosophy of Mathematics. Oxford University
Press.
Sheffer, H. M. (1913). A set of five independent
postulates for Boolean algebras, with application to logical
constants. Transactions of the American Mathematical
Society, 14, 481–488. https://www.ams.org/journals/tran/1913-014-04/S0002-9947-1913-1500960-1/
Shifman, M. (2012). Advanced Topics in Quantum
Field Theory: A lecture course. Cambridge University
Press.
Sider, T. (2011). Writing the Book of the
World. Oxford University Press.
———. (2022). Crash course on higher-order
logic. https://tedsider.org/teaching/higher_order_20/higher_order_crash_course.pdf
Siderits & M. (2021). Buddhism As Philosophy
(2nd ed.). Hackett.
Siegel, E. (2016). No, science is not
faith-based. Medium.com. March 15, 2016. https://medium.com/starts-with-a-bang/no-science-is-not-faith-based-ddc9be25efba
Siegel, K. (2014). The ubiquity of ADE
classifications in nature. https://kylersiegel.xyz/notes/ADEClassifications.pdf
Sigmund, K. (2017). Exact Thinking in Demented
Times: The Vienna Circle and the epic quest for the foundations of
science. Basic Books.
Silver, D. et al. (2016). Mastering the game of Go
with deep neural networks and tree search. Nature,
529, 484–489.
———. (2017a). Mastering chess and shogi by
self-play with a general reinforcement learning algorithm. https://arxiv.org/abs/1712.01815
———. (2017b). Mastering the game of Go without
human knowledge. Nature, 550,
354–359.
Silver, D., Singh, S., Precup, D., & Sutton, R. S. (2024). Reward is enough. Artificial
Intelligence, 299, 103535. https://www.sciencedirect.com/science/article/pii/S0004370221000862
Silvers, S. (1997). Nonreductive naturalism.
Theoria, 12, 163–184. https://addi.ehu.es/bitstream/handle/10810/40244/Theoria%2028%20163-184.pdf
Simon, B. (1976). Quantum dynamics: From
automorphism to Hamiltonian. In E. H. Lieb (Ed.), Studies in Mathematical Physics: Essays in Honor of
Valentine Bargmann (pp. 327–350). Princeton University
Press. http://www.math.caltech.edu/SimonPapers/R12.pdf
Simon, H. A. (1962). The architecture of
complexity. Proceedings of the American Philosophical
Society, 106, 467–482.
Simonyan, K. & Zisserman, A. (2014). Very deep
convolutional networks for large-scale image recognition. https://arxiv.org/abs/1409.1556
Sinervo, P. (2002). Signal significance in particle
physics. In M. R. Whalley & L. Lyons (Eds.), Proceedings of the Conference on Advanced Statistical
Techniques in Particle Physics. Durham, UK: Institute
of Particle Physics Phenomenology. https://arxiv.org/abs/hep-ex/0208005v1
———. (2003). Definition and treatment of systematic
uncertainties in high energy physics and astrophysics. In Lyons
L., Mount R., & R. Reitmeyer (Eds.), Proceedings of the Conference on Statistical Problems in
Particle Physics, Astrophysics, and Cosmology (PhyStat2003)
(pp. 122–129). Stanford Linear Accelerator Center. https://www.slac.stanford.edu/econf/C030908/papers/TUAT004.pdf
Singh, S. P., Lucchi, A., Hofmann, T., & Schölkopf, B. (2022). Phenomenology of double descent in finite-width neural
networks. https://arxiv.org/abs/2203.07337
Sivin, N. (1995). Why the scientific revolution did
not take place in China—Or didn’t it? In N. Sivin (Ed.),
Science in Ancient China.
Aldershot, Hants: Variorum. http://ccat.sas.upenn.edu/~nsivin/scirev.pdf
Skarsaune, K. O. (2009). Darwin and moral realism:
Survival of the iffiest. Philosophical Studies,
152, 229–243.
Skelac, I. & Jandric, A. (2020). Meaning as
use: From Wittgenstein to Google’s Word2vec. In S. Skansi (Ed.),
Guide To Deep Learning Basics: Logical, Historical And
Philosophical Perspectives (pp. 41–53).
Springer.
Slansky, R. (1981). Group theory for unified model
building. Physics Reports, 79,
1–128. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.126.1581&rep=rep1&type=pdf
Slonim, N., Atwal, G. S., Tkacik, G., & Bialek, W. (2005). Information-based clustering. Proceedings of
the National Academy of Sciences, 102,
18297–18302. https://arxiv.org/abs/q-bio/0511043
Smart, J. J. C. & Williams, B. (1973). Utilitarianism: For and against.
Cambridge University Press. https://www.utilitarianism.com/utilitarianism-for-and-against.pdf
Smith, L. (2019). A gentle introduction to
information geometry. September 27, 2019. http://www.robots.ox.ac.uk/~lsgs/posts/2019-09-27-info-geom.html
Smith, P. (2020). An Introduction to Formal
Logic (2nd ed.). Cambridge University Press.
———. (2022). Beginning Mathematical Logic: A Study
Guide. https://www.logicmatters.net/resources/pdfs/LogicStudyGuide.pdf
Smith, R. J. (2012). How the Book of Changes
Arrived in the West. New England Review,
33, 25–41. https://scholarship.rice.edu/bitstream/handle/1911/72082/Book-of-Changes.pdf
Snapper, E. (1979). The three crises in
mathematics: Logicism, intuitionism and formalism.
Mathematics Magazine, 52, 207–216. https://www.maa.org/sites/default/files/pdf/upload_library/22/Allendoerfer/1980/0025570x.di021111.02p0048m.pdf
Snow, C. P. (1959). The Two Cultures and the
Scientific Revolution. Oxford University Press.
Snyder-Hall, R. C. (2010). Third-wave feminism and
the defense of "choice". Perspectives on Politics,
8, 255–261. https://www.jstor.org/stable/25698533
Sohl-Dickstein, J. (2020). Two equalities
expressing the determinant of a matrix in terms of expectations over
matrix-vector products. https://arxiv.org/abs/2005.06553
Sokal, A. D. (1996a). A physicist experiments with
cultural studies. http://www.physics.nyu.edu/sokal/lingua_franca_v4.pdf
———. (1996b). Transgressing the boundaries: Towards
a transformative hermeneutics of quantum gravity. http://www.physics.nyu.edu/sokal/transgress_v2_noafterword.pdf
Sokal, A. D. & Bricmont, J. (1998). Fashionable Nonsense: Postmodern Intellectuals’ Abuse of
Science. Picador.
Solomonoff, G. (2016). Ray Solomonoff and the
Dartmouth Summer Research Project in Artificial Intelligence,
1956. http://raysolomonoff.com/dartmouth/dartray.pdf
Solzhenitsyn, A. (1974). The Gulag Archipelago.
(T. P. Whitney, Trans.). Harper & Row.
Sorell, T. (1991). Scientism: Philosophy and
the Infatuation with Science. Routledge.
Southey, F. et al. (2012). Bayes’ bluff: Opponent
modelling in poker. https://arxiv.org/abs/1207.1411
Spears, B.K. et al. (2018). Deep learning: A guide
for practitioners in the physical sciences. Physics of
Plasmas, 25, 080901.
Spivak, D. I. (2013). Category theory for
scientists. https://arxiv.org/abs/1302.6946
Spurrett, D. J. (1999). The Completeness of
Physics. Durban: The University of Natal.
(Ph.D. thesis). https://philpapers.org/rec/SPUTCO
Spurrett, D. J. & Papineau, D. (1999). A note
on the completeness of ’physics’. Analysis,
59, 25–29. https://www.davidpapineau.co.uk/uploads/1/8/5/5/18551740/analysis-1999-spurrett-25-9.pdf
Stacey, B. C. (2014). Von Neumann was not a quantum
Bayesian. https://arxiv.org/abs/1412.2409
Stadler, F. (1998). Vienna Circle. In Routledge Encyclopedia of Philosophy.
Taylor and Francis. https://www.rep.routledge.com/articles/thematic/vienna-circle/v-1.
———. (2015). The Vienna Circle: Studies in the
origins, development, and influence of Logical Empiricism.
Springer.
Stahlberg, F. (2019). Neural machine translation: A
review. https://arxiv.org/abs/1912.02047
Stalnaker, R. C. (2003). Ways a World Might Be:
Metaphysical and anti-metaphysical essays. Oxford:
Clarendon Press.
Stein, C. (1956). Inadmissibility of the usual
estimator for the mean of a multivariate normal distribution.
Proceedings of the Third Berkeley Symposium on Mathematical
Statistics and Probability, 1, 197–206.
Stein, H. (2021). Physics and philosophy meet: The
strange case of Poincaré.
Foundations of Physics, 51, 1–24.
Steinberger, F. (2016). How tolerant can you be?
Carnap on rationality. Philosophy and Phenomenological
Research, 92, 645–668.
Steinhardt, J. (2012). Beyond Bayesians and
frequentists. https://jsteinhardt.stat.berkeley.edu/files/stats-essay.pdf
———. (2022). More is different for AI. https://bounded-regret.ghost.io/more-is-different-for-ai/
Steinhardt, P. J. (1983). Natural inflation.
In The Very Early Universe: Proc. Nuffield
Workshop (pp. 251–66). Cambridge University
Press.
Stillwell, J. (2004). Emil Post and his
anticipation of Gödel and Turing.
Mathematics Magazine, 77, 3–14.
Stopp, F., Ortiz-Gutiérrez, L., Lehec, H., & Schmidt-Kaler, F.
(2021). Single ion thermal wave packet analyzed via
time-of-flight detection. New Journal of Physics,
23, 063002. https://iopscience.iop.org/article/10.1088/1367-2630/abffc0
Strawson, P. F. (1950). On referring.
Mind, 59, 320–344.
Streater, R. & Wightman, A. (1964). PCT,
spin and statistics, and all that. New York:
Benjamin.
Stuart, A., Ord, K., & Arnold, S. (2010). Kendall’s Advanced Theory of Statistics, Vol 2A:
Classical Inference and the Linear Model.
Wiley.
Sullivan, B. W. (2013). Everything You Always Wanted To Know
About Mathematics. Carnegie Mellon University.
(Ph.D. thesis). https://www.math.cmu.edu/~jmackey/151_128/bws_book.pdf
Summers, S. J. (1999). On the Stone-von Neumann
uniqueness theorem and its ramifications. In John von Neumann and the Foundations of Quantum
Physics (pp. 135–152). Budapest: Kluwer.
Sun, Y. et al. (2023). Retentive network: A
successor to transformer for large language models. https://arxiv.org/abs/2307.08621
Suppe, F. (1974). The Structure of Scientific
Theories. University of Illinois Press.
———. (2000). Understanding scientific theories: An
assessment of developments, 1969-1998. Philosophy of
Science, 67, 102–115.
Suppes, P. (1961). A comparison of the meaning and
uses of models in mathematics and the empirical sciences. In
The Concept and the Role of the Model in
Mathematics and Natural and Social Sciences (pp. 163–177).
Springer, Dordrecht.
———. (1967). What is a scientific theory? In
S. Morgenbesser (Ed.), Philosophy of Science
Today (pp. 55–67). Basic Books.
Sussman, G. J. & Wisdom, J. (2013). Functional
Differential Geometry. MIT Press. https://mitpress.mit.edu/books/functional-differential-geometry
Sutskever, I. (2015). A brief overview of deep
learning. https://web.archive.org/web/20220728224752/http://yyue.blogspot.com/2015/01/a-brief-overview-of-deep-learning.html
Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural
networks. Advances in Neural Information Processing
Systems, 2014, 3104–3112. https://arxiv.org/abs/1409.3215
Sutton, R. S. (2019). The bitter lesson. http://www.incompleteideas.net/IncIdeas/BitterLesson.html
Sutton, R. S. & Barto, A. G. (2018). Reinforcement
Learning (2nd ed.). MIT Press.
Swartz, N. (2003). The Concept of Physical
Law (2nd ed.). http://www.sfu.ca/~swartz/physical-law/
———. (2009). Laws of nature.
International Encyclopedia of Philosophy. http://www.iep.utm.edu/lawofnat/
Sznajder, M. (2018). Inductive logic as
explication: The evolution of Carnap’s notion of logical
probability. The Monist, 101,
417–440.
’t Hooft, G. (1971). Renormalizable Lagrangians for
massive Yang-Mills fields. Nuclear Physics B, 35,
167–188.
———. (1978). Extended objects in gauge field
theories. In D. H. Bod & A. N. Kamal (Eds.), Particles and Fields (pp. 165–198). New York:
Plenum.
———. (1994). Under the Spell of the Gauge
Principle. World Scientific.
———. (1999). A confrontation with infinity.
Nobel Lecture, December 8, 1999. https://www.nobelprize.org/prizes/physics/1999/thooft/lecture/
———. (2005). The conceptual basis of quantum field
theory. https://dspace.library.uu.nl/bitstream/handle/1874/22670/hooft_05_conceptualbasisofquantumfieldtheory.pdf
———. (2007). Lie groups in physics. http://www.staff.science.uu.nl/~hooft101/lectures/lieg07.pdf
———. (2014). The cellular automaton interpretation
of quantum mechanics. https://arxiv.org/abs/1405.1548
———. (2021). An unorthodox view on quantum
mechanics. https://arxiv.org/abs/2104.03179
Tahko, T. E. (2022). Natural kinds,
mind-independence, and unification principles. Synthese,
200, 144. https://link.springer.com/article/10.1007/s11229-022-03661-7
Tait, W. W. (1983). Against intuitionism:
Constructive mathematics is part of classical mathematics.
Journal of Philosophical Logic, 12,
173–195.
Takagi, Y. & Nishimoto, S. (2022). High-resolution image reconstruction with latent
diffusion models from human brain activity. https://doi.org/10.1101/2022.11.18.517004
Tammelin, O. (2014). Solving large imperfect
information games using CFR+. https://arxiv.org/abs/1407.5042
Tammelin, O., Burch, N., Johanson, M., & Bowling, M. (2015). Solving heads-up limit texas hold’em.
International Joint Conference on Artificial Intelligence,
24. http://johanson.ca/publications/poker/2015-ijcai-cfrplus/2015-ijcai-cfrplus.pdf
Tan, M. & Le, Q. V. (2019). EfficientNet:
Rethinking model scaling for convolutional neural networks. https://arxiv.org/abs/1905.11946
———. (2021). EfficientNetV2: Smaller models and
faster training. https://arxiv.org/abs/2104.00298
Tao, T. (2007). Differential forms and
integration. https://www.math.ucla.edu/~tao/preprints/forms.pdf
Tarski, A. (1969). Truth and proof.
Scientific American, 220, 63–77. https://web.archive.org/web/20141229081319/http://people.scs.carleton.ca/~bertossi/logic/material/tarski.pdf
———. (1983). The concept of truth in formalized
languages. In J. Corcoran (Ed.), Logic, Semantics,
Metamathematics. Hackett. (Originally published
in 1936 in German.). http://www.thatmarcusfamily.org/philosophy/Course_Websites/Readings/Tarski%20-%20The%20Concept%20of%20Truth%20in%20Formalized%20Languages.pdf
Tartaglia, J. (2016). Philosophy in a
Meaningless Life. Bloomsbury Academic.
Tay, Y., Dehghani, M., Bahri, D., & Metzler, D. (2022). Efficient transformers: A survey. https://arxiv.org/abs/2009.06732
Tegmark, M. (1993). Apparent wave function collapse
caused by scattering. Foundations of Physics Letters,
6, 571–590. https://arxiv.org/abs/gr-qc/9310032
———. (2008). The mathematical universe.
Foundations of Physics, 38, 101–150. https://arxiv.org/abs/0704.0646
———. (2014). Our Mathematical Universe.
Knopf.
Tegmark, M., Taylor, A. N., & Heavens, A. F. (1997). Karhunen-Loeve eigenvalue problems in cosmology: How
should we tackle large data sets? The Astrophysical
Journal, 480, 22–35. https://arxiv.org/abs/astro-ph/9603021
———. (1997). An Interpretive Introduction to
Quantum Field Theory. Princeton University
Press.
———. (2000). The gauge argument.
Philosophy of Science, 67, 466–481.
Tenney, I. et al. (2019). What do you learn from
context? Probing for sentence structure in contextualized
word representations. https://arxiv.org/abs/1905.06316
Thomas, B. (2015). A disease of
scienceyness. Medium.com. March 4, 2015. https://medium.com/%40writingben/a-disease-of-scienceyness-7b5571a34953
Thomson, J. J. (1971). A defense of
abortion. Philosophy & Public Affairs,
1, 47–66.
Thuerey, N. et al. (2021). Physics-based deep
learning. https://arxiv.org/abs/2109.05237
Timbers, F. (2020). Approximate exploitability:
Learning a best response in large games. https://arxiv.org/abs/2004.09677
Todorov, I. (2012). Quantization is a
mystery. https://arxiv.org/abs/1206.3116
Tollefsen, D. (1999). Princess Elisabeth and the
problem of mind-body interaction. Hypatia,
14, 59–77.
Tong, D. (2006). Lectures on Quantum Field
Theory. https://www.damtp.cam.ac.uk/user/tong/qft.html
———. (2022). Lectures on Supersymmetric Field
Theory. https://www.damtp.cam.ac.uk/user/tong/susy.html
Tononi, G. (2004). An information integration
theory of consciousness. BMC Neuroscience,
5, 1–22. https://link.springer.com/article/10.1186/1471-2202-5-42
———. (2010). Information integration: Its relevance
to brain function and consciousness. Archives Italiennes de
Biolaogie, 148, 299–322. http://www.architalbiol.org/index.php/aib/article/view/148299
Tononi, G. & Edelman, G. M. (1998). Consciousness and complexity. Science,
282, 1846–1851.
Torretti, R. (1999). The Philosophy of
Physics. Cambridge University Press.
Tu, L. W. (2017). Differential Geometry:
Connections, Curvature, and Characteristic Classes.
Springer.
Tukey, J. W. (1977). Exploratory Data Analysis.
Pearson.
Tumulka, R. (2017). Bohmian mechanics. https://arxiv.org/abs/1704.08017
Turing, A. M. (1937). On computable numbers, with
an application to the Entscheidungsproblem. Proceedings of
the London Mathematical Society, 42, 230–65.
Udrescu, S. & Tegmark, M. (2020). Symbolic
pregression: Discovering physical laws from raw distorted video.
https://arxiv.org/abs/2005.11212
Urban, T. (2015). The AI Revolution: The Road to
Superintelligence. https://waitbutwhy.com/2015/01/artificial-intelligence-revolution-1.html
Vákár, M. (2011). Principal bundles and gauge
theories. https://arxiv.org/abs/2110.06334
van Fraassen, B. (1980). The Scientific Image.
Oxford University Press.
———. (2002). The Empirical Stance. Yale
University Press.
van Handel, R. (2016). Probability in high
dimensions. Lecture notes at Princeton. https://web.math.princeton.edu/~rvan/APC550.pdf
van Hove, L. (1958). Von Neumann’s contributions to
quantum theory. Bulletin of the American Mathematical
Society, 64, 95–100. https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society-new-series/volume-64/issue-3.P2/Von-Neumanns-contributions-to-quantum-theory/bams/1183522374.full
van Inwagen, P. (2014). Metaphysics. Stanford
Encyclopedia of Philosophy. https://plato.stanford.edu/entries/metaphysics/
van Nieuwenhuizen, P. (1981). Supergravity. Physics
Reports, 68, 189–398.
Van Norden, B. W. (2017). Taking Back Philosophy: A
Multicultural Manifesto. Columbia University
Press.
Vapnik, V., Levin, E., & LeCun, Y. (1994). Measuring the VC-dimension of a learning machine.
Neural Computation, 6, 851–876.
Varadarajan, V. S. (2003). Vector bundles and
connections in physics and mathematics: some historical remarks.
In A Tribute to CS Seshadri (pp.
502–541). Gurgaon: Hindustan Book Agency.
Vaswani, A. et al. (2017). Attention is all you
need. Advances in Neural Information Processing Systems,
2017, 5998–6008. https://arxiv.org/abs/1706.03762
Venn, J. (1888). The Logic of
Chance. London: MacMillan and Co. (Originally
published in 1866).
Ver Hoef, J. M. (2012). Who invented the delta
method? American Statistician, 66,
124–127. https://www.jstor.org/stable/23339471
Verhaegh, S. (2019). The American reception of
logical positivism: First encounters (1929-1932). HOPOS: The
Journal of the International Society for the History of Philosophy of
Science, 10, 106–142.
———. (2020). Coming to America: Carnap, Reichenbach
and the great intellectual migration. Journal for the History
of Analytical Philosophy, 8, 1–47. https://jhaponline.org/jhap/article/view/4364
Vershynin, R. (2018). High-Dimensional
Probability: An Introduction with Applications in Data
Science. Cambridge University Press. https://www.math.uci.edu/~rvershyn/papers/HDP-book/HDP-book.pdf
Vickers, J. (2014). The problem of
induction. Stanford Encyclopedia of Philosophy. https://stanford.library.sydney.edu.au/archives/sum2016/entries/induction-problem/
Vincent, J. (2019). OpenAI’s new multitalented AI
writes, translates, and slanders: A step forward in AI text-generation
that also spells trouble. https://www.theverge.com/2019/2/14/18224704/ai-machine-learning-language-models-read-write-openai-gpt2
Vinge, V. (1993). The coming technological
singularity. https://edoras.sdsu.edu/~vinge/misc/singularity.html
Vitagliano, E., Tamborra, I., & Raffelt, G. (2020). Grand unified neutrino spectrum at Earth: Sources and
spectral components. Reviews of Modern Physics,
92, 045006. https://arxiv.org/abs/1910.11878
Viteri, S. & DeDeo, S. (2022). Epistemic phase
transitions in mathematical proofs. Cognition,
225, 105120. https://www.sciencedirect.com/science/article/pii/S0010027722001081
von Fintel, K. (2011). Conditionals. https://dspace.mit.edu/handle/1721.1/95781
von Neumann, J. (1955). The Mathematical
Foundations of Quantum Mechanics. (R. T. Beyer, Trans.).
Princeton University Press. (Originally published in German
in 1932).
Vrahimis, A. (2013). Was there a sun before men
existed?: A.J. Ayer and French philosophy in the fifties.
Journal for the History of Analytical Philosophy,
1. https://jhaponline.org/jhap/article/view/12
Wagenmakers, E. J. (2021). Review: Bernoulli’s
Fallacy. Chance, 34, 37–38. https://www.tandfonline.com/doi/full/10.1080/09332480.2021.2003642
Wagner, P. (2009). Carnap’s Logical Syntax of
Language. Palgrave Macmillan.
Wainer, H. (2007). The most dangerous
equation. American Scientist, 95,
249–256. https://sites.stat.washington.edu/people/peter/498.Sp16/Equation.pdf
Wakefield, J. (2013). Bayesian and Frequentist
Regression Methods. Springer.
Wald, A. (1943). Tests of statistical hypotheses
concerning several parameters when the number of observations is
large. Transactions of the American Mathematical
Society, 54, 426–482. https://www.ams.org/journals/tran/1943-054-03/S0002-9947-1943-0012401-3/S0002-9947-1943-0012401-3.pdf
Wall, C. T. C. (1964). Graded Brauer groups.
Journal für Die Reine Und Angewandte Mathematik,
213, 187–199.
Wallace, D. (2011). Taking particle physics
seriously: A critique of the algebraic approach to quantum field
theory. Studies in History and Philosophy of Modern
Physics, 42, 116–125.
———. (2012). The Emergent Multiverse. Oxford
University Press.
———. (2013). Inferential vs dynamical conceptions
of physics. https://arxiv.org/abs/1306.4907
———. (2014). Deflating the Aharonov-Bohm
effect. https://arxiv.org/abs/1407.5073
———. (2016). What is orthodox quantum
mechanics? https://arxiv.org/abs/1604.05973
———. (2018). Decoherence and its role in the modern
measurement problem. https://arxiv.org/abs/1111.2187
———. (2020). Lessons from realistic physics for the
metaphysics of quantum theory. Synthese,
197, 4303–4318. https://link.springer.com/article/10.1007/s11229-018-1706-y
———. (2022). The sky is blue, and other reasons
quantum mechanics is not underdetermined by evidence. https://arxiv.org/abs/2205.00568
Wang, H. et al. (2023). BitNet: Scaling 1-bit
transformers for large language models. https://arxiv.org/abs/2310.11453
Warren, J. (2016a). Internal and external questions
revisited. The Journal of Philosophy,
113, 177–209.
———. (2016b). Revisiting Quine on truth by
convention. Journal of Philosophical Logic,
46, 119–139.
———. (2016c). Sider on the epistemology of
structure. Philosophical Studies,
173, 2417–2435.
Wasserman, L. (2003). All of Statistics: A
Concise Course in Statistical Inference.
Springer.
Wasserstein, R. L., Allen, L. S., & Lazar, N. A. (2019). Moving to a World Beyond "p<0.05". American
Statistician, 73, 1–19.
Wasserstein, R. L. & Lazar, N. A. (2016). The
ASA’s statement on p-values: Context, process, and purpose.
American Statistician, 70, 129–133.
Watson, D. & Floridi, L. (2019). The
explanation game: A formal framework for interpretable machine
learning. SSRN, 3509737. https://ssrn.com/abstract=3509737
Way, R. (2010). Introduction to connections on
principal fibre bundles. http://personal.maths.surrey.ac.uk/T.Bridges/GEOMETRIC-PHASE/Connections_intro.pdf
Weatherson, B. (2017). Analytic-synthetic and a
priori-a posteriori. In G. Cappelen H. & J. Hawthorne (Eds.),
The Oxford Handbook of Philosophical
Methodology (pp. 231–248). Oxford University
Press.
Wedgwood, R. (2007). The Nature of
Normativity. Oxford University Press.
Weinberg, S. (1964a). Feynman rules for any spin
II: Massless particles. Physical Review,
134, B882.
———. (1964b). Feynman rules for any spin.
Physical Review, 133, B1318.
———. (1967). A model of leptons.
Physical Review Letters, 19, 1264–1266.
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.19.1264
———. (1977). The First Three Minutes. Basic
Books.
———. (1979). Conceptual foundations of the unified
theory of weak and electromagnetic interactions. Nobel lecture,
December 8, 1979. https://www.nobelprize.org/uploads/2018/06/weinberg-lecture.pdf
———. (1995). The Quantum Theory of Fields:
Volume 1 Foundations. Cambridge University
Press.
———. (1996). Sokal’s Hoax. The New York
Review of Books, 43, 11–15. August 8, 1996.
http://www.physics.nyu.edu/faculty/sokal/weinberg.html
———. (1997a). What is an elementary
particle? Beam Line, 27, 17–21. https://www.slac.stanford.edu/pubs/beamline/27/1/27-1-weinberg.pdf
———. (1997b). What is quantum field theory, and
what did we think it is? Conceptual Foundations of Quantum
Field Theory: Proceedings, Symposium and Workshop, Boston, USA, March
1-3, 1996. http://arxiv.org/abs/hep-th/9702027
———. (2015). To Explain The World: The
discovery of modern science. Harper.
Weintraub, R. (1995). What was Hume’s contribution
to the problem of induction? The Philosophical
Quarterly, 45, 460–470.
Weisberg, J. (2019). Odds & Ends:
Introducing Probability & Decision with a Visual
Emphasis. https://jonathanweisberg.org/vip/
Weiss, W. & D’Mello, C. (2015). Fundamentals of Model Theory. https://www.math.toronto.edu/weiss/model_theory.pdf
Werbos, P. J. (1990). Backpropagation through time:
what it does and how to do it. Proceedings of the IEEE,
78, 1550–1560. http://www.werbos.com/Neural/BTT.pdf
Westbury, B. W. (2010). Hurwitz’ theorem on
composition algebras. https://arxiv.org/abs/1011.6197
Weyl, H. (1918). Raum, Zeit, Materie.
———. (1929). Elektron und gravitation.
Zeitschrift für Physik, 56,
330–352.
———. (2009). Philosophy of Mathematics and
Natural Science. Princeton University Press.
(Originally published in German in 1927).
Wheeler, J. A. (1957). Assessment of Everett’s
"relative state" formulation of quantum theory. Reviews of
Modern Physics, 29, 46–465.
Whetsell, T. A. & Shields, P. M. (2013). The
dynamics of positivism in the study of public administration: A brief
intellectual history and reappraisal. Administration &
Society, 47, 416–446.
Whitehead, A. N. (1978). Process and
Reality. New York: The Free Press.
Wigner, E. P. (1939). On unitary representations of
the inhomogeneous Lorentz group. Annals of Mathematics,
40, 149–204.
———. (1954). Conservation laws in classical and
quantum physics. Progress of Theoretical Physics,
11, 437–440. https://academic.oup.com/ptp/article/11/4-5/437/1831457
———. (1959). Group Theory and its Application
to the Quantum Mechanics of Atomic Spectra. Academic
Press. (Originally published in German in 1931).
———. (1960). The unreasonable effectiveness of
mathematics in the natural sciences. Communications on Pure
and Applied Mathematics, 13, 1–14. Richard
courant lecture in mathematical sciences delivered at New York
University, May 11, 1959. http://www.dartmouth.edu/~matc/MathDrama/reading/Wigner.html
———. (1961). Remarks on the mind-body
question. In I. J. Good (Ed.), The
Scientist Speculates: An Anthology of Partly-Baked Ideas.
London: Heinemann.
Wilhelm, I. (2022). Centering the Everett
interpretation. https://philpapers.org/rec/WILCTE-4
Wilks, S. S. (1938). The large-sample distribution
of the likelihood ratio for testing composite hypotheses. The
Annals of Mathematical Statistics, 9, 60–62.
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-9/issue-1/The-Large-Sample-Distribution-of-the-Likelihood-Ratio-for-Testing/10.1214/aoms/1177732360.full
Williams, C. (2017). Has Trump stolen philosophy’s
critical tools? The New York Times. April 17, 2017. https://www.nytimes.com/2017/04/17/opinion/has-trump-stolen-philosophys-critical-tools.html
Williams, P. (2009). Mahayana Buddhism: The
doctrinal foundations (2nd ed.). Routledge.
———. (2011). On converting from Buddhism to
Catholicism: One convert’s story. http://whyimcatholic.com/index.php/conversion-stories/buddhist-converts/65-buddhist-convert-paul-williams
———. (2019). Scientific realism made
effective. British Journal for the Philosophy of
Science, 70, 209–237. https://www.journals.uchicago.edu/doi/full/10.1093/bjps/axx043
Williamson, J. (2009). The philosophy of science
and its relation to machine learning. In Scientific Data Mining and Knowledge
Discovery (pp. 77–89). Springer, Berlin,
Heidelberg.
Wilson, E. O. (1998). Consilience: The Unity of
Knowledge. Vintage.
Wilson, K. G. (1974). The renormalization group and
the ε expansion.
Physics Reports, 12, 75–199.
———. (1979). Problems in physics with many scales
of length. Scientific American,
241, 158–179. https://www.jstor.org/stable/24965270
Winburn, A. P. & Clemmons, C. M. J. (2021). Objectivity is a myth that harms the practice and
diversity of forensic science. Forensic Science
International: Synergy, 3, 100196. https://www.sciencedirect.com/science/article/pii/S2589871X21000668
Witten, E. (1989). Quantum field theory and the
Jones polynomial. Communications Mathematical Physics,
121, 351–399. https://projecteuclid.org/journals/communications-in-mathematical-physics/volume-121/issue-3/Quantum-field-theory-and-the-Jones-polynomial/cmp/1104178138.full
———. (1998). Anti-de Sitter space and
holography. Advances in Theoretical and Mathematical
Physics, 2, 253–291. https://arxiv.org/abs/hep-th/9802150
Wittgenstein, L. (1929). Some remarks on logical
form. Proceedings of the Aristotelian Society Supplementary
Volumes, 9, 162–171. https://academic.oup.com/aristoteliansupp/article/9/1/162/1779966
———. (1961). Tractatus Logico-Philosophicus. (D.
F. Pears & B. F. McGuinness, Trans.). Routledge.
(Originally published in 1922). https://people.umass.edu/klement/tlp/tlp.html
———. (1969). On Certainty. Oxford: Basil
Blackwell.
———. (2009). Philosophical Investigations. (E.
Anscombe & P. Hacker, Trans., P. Hacker & J. Schulte, Eds.) (4th
ed.). Wiley-Blackwell. (Originally published in 1953).
Wolfram, S. (2023). What is ChatGPT doing—and why
does it work? https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/
Wolpert, D. H. (1996). The lack of a priori
distinctions between learning algorithms. Neural
Computation, 8, 1341–1390.
———. (2007). Physical limits of inference.
https://arxiv.org/abs/0708.1362
———. (2023). The implications of the no-free-lunch
theorems for meta-induction. Journal for General Philosophy
of Science, 54, 421–432. https://link.springer.com/article/10.1007/s10838-022-09609-2
Wolpert, D. H. & Kinney, D. (2020). Noisy
deductive reasoning: How humans construct math, and how math constructs
universes. https://arxiv.org/abs/2012.08298
Wolpert, D. H. & Macready, W. G. (1995). No
free lunch theorems for search. Technical Report
SFI-TR-95-02-010, Santa Fe Institute.
———. (1997). No free lunch theorems for
optimization. IEEE Transactions on Evolutionary
Computation, 1, 67–82.
Wong, M. L. & Bartlett, S. (2022). Asymptotic
burnout and homeostatic awakening: A possible solution to the Fermi
paradox? Journal of the Royal Society Interface,
19, 20220029. https://royalsocietypublishing.org/doi/full/10.1098/rsif.2022.0029
Worrall, J. (1989). Structural realism: The best of
both worlds? Dialectica, 43,
99–124.
Wray, K. B. (2018). Resisting Scientific Realism.
Cambridge University Press.
Wright, R. (2017). Why Buddhism is True: The
Science and Philosophy of Meditation and Enlightenment.
Simon & Schuster.
Wu, J. (2021). Explaining universality: infinite
limit systems in the renormalization group method.
Synthese, 199, 14897–14930. https://link.springer.com/article/10.1007/s11229-021-03448-2
Wu, T. T. & Yang, C. N. (1975). Concept of
nonintegrable phase factors and global formulation of gauge
fields. Physical Review D, 12,
3845–3857.
Wu, Y. et al. (2016). Google’s neural machine
translation system: Bridging the gap between human and machine
translation. https://arxiv.org/abs/1409.0473
Wuthrich, C. (2014). Putnam looks at quantum
mechanics (again and again). https://arxiv.org/abs/1406.5737
Xu, Z., Hasselt, H. van, & Silver, D. (2018). Meta-gradient reinforcement learning. https://arxiv.org/abs/1805.09801
Yablo, S. & Gallois, A. (1998). Does ontology
rest on a mistake? Aristotelian Society Supplementary
Volume, 72, 229–262.
Yang, C. N. (1996). Symmetry and physics.
Proceedings of the American Philosophical Society,
140, 267–288. https://www.jstor.org/stable/pdf/987310.pdf
Yang, C. N. & Mills, R. L. (1954). Conservation
of isotopic spin and isotopic gauge invariance. Physical
Review, 96, 191–195.
Yang, T. & Suzuki, J. (2023). Dropout drops
double descent. https://arxiv.org/abs/2305.16179
Yang, Z. et al. (2019). XLNet: Generalized
autoregressive pretraining for language understanding. https://arxiv.org/abs/1906.08237
Yock, P. (2018). Newton’s hypotheses on the
structure of matter. https://arxiv.org/abs/1807.05486
Zaheer, M. et al. (2020). Big Bird: Transformers
for longer sequences. https://arxiv.org/abs/2007.14062
Zalta, E. N. (1983). Abstract Objects: An
Introduction to Axiomatic Metaphysics. Dordrecht:
Reidel. https://mally.stanford.edu/abstract-objects.pdf
———. (2000). Neo-logicism? An ontological reduction
of mathematics to metaphysics. Erkenntnis,
53, 219–265. https://www.jstor.org/stable/20013013
———. (2007). Reflections on mathematics. In
V. F. Hendricks & H. Leitgeb (Eds.), Philosophy of Mathematics: 5 Questions (pp.
313–328). New York: Automatic Press. https://mally.stanford.edu/Papers/reflections.pdf
———. (2011). Logic and metaphysics.
Logic and Philosophy Today, 2, 153–172.
https://mally.stanford.edu/Papers/logic-metaphysics.pdf
———. (2025). Principia Logico-Metaphysica. (Draft
May 16, 2025). https://mally.stanford.edu/principia.pdf
Zapata-Carratala, C. (2021). Dimensioned algebra:
The mathematics of physical quantities. https://arxiv.org/abs/2108.08703
Zech, G. (1995). Comparing statistical data to
Monte Carlo simulation: Parameter fitting and unfolding.
(DESY-95-113). Deutsches Elektronen-Synchrotron (DESY). https://cds.cern.ch/record/284321
Zee, A. (2003). Quantum Field Theory in a
Nutshell. Princeton University Press.
———. (2016). Group Theory in a Nutshell for
Physicists. Princeton University Press.
Zeidler, E. (2007). Quantum Field Theory I:
Basics in mathematics and physics, Vol. 1.
Springer.
———. (2008). Quantum Field Theory II: Quantum
electrodynamics, Vol. 2. Springer.
———. (2011). Quantum Field Theory III: Gauge
theory, Vol. 3. Springer.
Zhang, D. et al. (2021). The AI Index 2021 Annual Report.
Human-Centered Artificial Intelligence, Stanford
University. https://arxiv.org/abs/2103.06312
———. (2022). The AI Index 2022 Annual Report.
Human-Centered Artificial Intelligence, Stanford
University. https://aiindex.stanford.edu/wp-content/uploads/2022/03/2022-AI-Index-Report_Master.pdf
Zhang, T. (2023). Critical realism: A critical
evaluation. Social Epistemology,
37, 15–29. https://www.tandfonline.com/doi/full/10.1080/02691728.2022.2080127
Zhang, W. (1998). Complete anytime beam
search. AAAI Proceedings, 98,
425–430. https://cdn.aaai.org/AAAI/1998/AAAI98-060.pdf
Zhao, J. et al. (2024). GaLore: Memory-efficient
LLM training by gradient low-rank projection. https://arxiv.org/abs/2403.03507
Zhao, W.X. et al. (2023). A survey of large
language models. https://arxiv.org/abs/2303.18223
Zhao, Y. et al. (2023). DETRs beat YOLOs on
real-time object detection. https://arxiv.org/abs/2304.08069
Zhou, R. & Hansen, E. A. (2005). Beam-stack
search: Integrating backtracking with beam search.
ICAPS, 15, 90–98. https://cdn.aaai.org/ICAPS/2005/ICAPS05-010.pdf
Zinkevich, M., Johanson, M., Bowling, M., & Piccione, C. (2007).
Regret minimization in games with incomplete
information. Advances in Neural Information Processing
Systems, 20, 1729–1736. https://proceedings.neurips.cc/paper/2007/file/08d98638c6fcd194a4b1e6992063e944-Paper.pdf
Zumbrunnen, J. (2002). "Courage in the face of
reality": Nietzsche’s admiration for Thucydides. Polity,
35, 237–263.
Zurek, W. H. (1991). Decoherence and the transition
from quantum to classical. Physics Today,
44, 36. https://www.unicamp.br/~chibeni/textosdidaticos/zurek-1991.pdf
———. (2001). Decoherence, einselection, and the
quantum origins of the classical. Reviews of Modern
Physics, 75, 715–775. https://arxiv.org/abs/quant-ph/0105127
———. (2003). Decoherence and the transition from
quantum to classical–Revisited. https://arxiv.org/abs/quant-ph/0306072
———. (2022). Quantum theory of the classical:
Einselection, envariance, quantum Darwinism and extantons. https://arxiv.org/abs/2208.09019
Zyla, P.A. et al. (Particle Data Group). (2021). Review of Particle Physics. Progress of
Theoretical and Experimental Physics, 2020,
083C01. (and 2021 update). https://pdg.lbl.gov/2021/reviews/contents_sports.html