5 Convex optimization
5.1 Introduction
This is how we minimize \(\sigma\).
- Linear programming
- George Dantzig (1914-2005)
- Quadratic programming
- No-shorts efficient frontier
- Karush-Kuhn-Tucker (KKT) conditions
- Jagannathan, R. & Ma, T. (2003). Risk reduction in large portfolios: Why imposing the wrong constraints helps. 1
- Tam, A.S. (2021). Lagrangians and portfolio optimization.
- Boyd, S. & Vandenberghe, L. (2004). Convex Optimization. 2
- Markowitz’s Critical Line Algorithm (CLA)
- Markowitz, H.M. (1956). The optimization of a quadratic function subject to linear constraints. 3
- Bailey, D.H. & López de Prado, M. (2013). An open-source implementation of the critical-line algorithm for portfolio optimization. 4
- Markowitz, H.M., Starer, D., Fram, H., & Gerber, S. (2019). Avoiding the downside: A practical review of the Critical Line Algorithm for mean-semivariance portfolio optimization. 5
- Software:
5.2 No-shorts efficient frontier
Solve
\[ \vec{w}_{\ast} = \underset{w}{\mathrm{argmin}}\ \vec{w}^\intercal \, V \, \vec{w} \]
such that
\[ \vec{w} \cdot \vec{1} = 1 \]
\[ \vec{w} \cdot \vec{\mu} = r_{\ast} \]
and with further optional constraints
\[ A \, \vec{w} \geq \vec{b} \]
TODO: Discuss optimizing the no-shorts frontier.
5.3 Projection onto a simplex
- Condat, L. (2016). Fast projection onto the simplex and the \(l_1\) ball. 6
6 Condat (2016).