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The problem of induction

* We justify inferences with

» deduction: following by definition,
logic, mathematics, “relations of ideas”

» induction: generalizing a universal based on
limited data, drawing generalized conclusions
from “matters of fact”

* Can we trust that “instances of which we
have had no experience resemble those

of which we have had experience™?
(Hume, 1739)

David Hume (1711-1776)

* Induction is always susceptible possible
“black swans”.

* Russell’s Thanksgiving turkey.
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Sympathy for positivism

“Carnap never a
philosophy shou

pandoned his belief that science and
d be founded on a bedrock of logic... His

unshakeable sup

inductive logic made his position an increasingly isolated
philosophy during the latter part of the Twentieth Century.

Meanwhile, technology has moved on... The agency of
machines will steadily increase: think of robots, unmanned
vehicles, industrial processes... so Carnap’s approach will
become increasingly relevant, because highly sophisticated
machine agents will certainly act on a basis of logic...

Carnap’s faith in
will have been vi
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bort of the primacy of both deductive and

logic as the basis of one form of agency
ndicated.”

[Mackarlane, A. (2017). Rudolf Carnap (1891-19/0). Philosophy Now, | 18.] 4
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Machine learning

very high level representation:
MAN]| [SITTING | -

4

.. etc ...

4

slightly higher level representation

4

raw 1nput vector representation:

A’'=|23]119|20 18
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The automation of

Pattern recognition
Classification
Data reduction

Derivation of high-level
representation

Hypothesis testing

[Bengio (2009) . p. 3]



Neural Nets

Inputs WEIghtS Net input Activation ) ] hidden layer 1 hidden layer 2 hidden laver 3
function function nput fayet

oo (P—
~ w output

output layer

yzf(:li)ZK(Zwigi(ﬂ?)) f(z)’z’wz'gw?jxj
i ~ matrix

multiplication
except nonlinear

* “Deep” networks have
multiple hidden layers

Neural nets have:
* input varaiables, x;

e weights, w; N : :
S 1 activation e Can be used for classification or

* activation function, K( - ) regression

(sigmoid, tanh, ...) g '
* output variables, y; e Similar to other multivariate
* a learning rule to update the weights. techniques, cutting on a classifier
* a learning step is called an “epoch.” makes some acceptance blob in
* Optimizing the weights is called “training.” X-Space.
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Why go deep?

* Multiple layers allow for
specialization and feature
extraction.

* Now in “Deep
Learning Renaissance™
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|. Better training: techniques and tools (e.g. SGD, layerwise training,

smarter NN structures).

2. Better hardware: multicore, GPUs, bigger data centers, cloud computing,
coming: neuromorphic computing.

3. More training: bigger datasets, search, the internet, open science.
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Learning to identify things

Is end-to-end learning from the raw data the future of particle
bhysics reconstruction?

ImageNet competition example  Future of ATLAS!?

1.12 woman
-0.28 n

1.23 white
|.45 dress
0.06 standing
-0.13 with

3.58 tennis

- |.81 racket
N
:\\:‘Q‘S\\\ 0.00 two
— S
‘\:&\ 0.05 people
0.14 1n

0.30 green
-0.09 behind

4 -0.14 her
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Learning to identify things

Is end-to-end learning from the raw data the future of particle
bhysics reconstruction?

ImageNet competition example

1.12 woman

-0.28 n

1.23 white
.45 dl’&‘.\.\
0.06 standing
-0.13 with

3.58 tennis

Ryan Reece (UCSC)

1.81 racket
0.06 two
0.05 people
-0.14 1n
0.30 green
-0.09 behind

-0.14 her




* Deep learning does best

Deep Learning in HEP

® Baldi et al. (2014). Searching for Exotic Particles
in High-Energy Physics with Deep Learning. [1402.4735]

with raw data and when

there are unexploited Higgslﬂ the Higgle chq"enge

challenge
features. May to September 2014

* raw channels —btagging When High Energy Physics meets Machine Learning

* basic kinematics— features

Baldi et al. (2015). Enhanced Higgs to TT~
Search with Deep Learning. [1410.3469]

® Guest et al. (2016). Jet Flavor

® Aurisano et al. (2016). A Convolutional Neural Classification in HEP with DNNs.

Network Neutrino Event Classifier. [|1604.01444]
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Unsupervised learning

features

1.12 woman

Raw input

-0.28 in

1.23 white
1.45 dress
0.06 standing
-0.13 with
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-0.14 her

Vector Quantization (VQ)

clusters in feature space
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“The typical vectors we use to represent concepts like images have about 4,000 dimensions,” he says.“So,
basically, it is a list of 4,000 numbers that characterises everything about an image.” Vectors can describe an
image, a piece of text or human interests. Reduced to a number, it’s easy for computers to search and
compare. If the interests of a person, represented by a vector, match the vector of an image, the person will
likely enjoy the image.“Basically, it reduces reasoning to geometry,’ he says.
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— Jeff Goodell of Rolling Stone quoting ML researcher Yann LeCunn at NYU and Facebook



Cluster sensitivity
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* Any experiment has empirical limits.

» To discover structure within clusters (split them) may require
better measurement precision, and/or better training samples,

and/or exposure to new features (y-dimensions).

* Clustering is task, algorithm, or model dependent (in the case
of maximum likelihood fitting).

» Not everyone agrees with me: “lt seems to me that a misguided
desire for uniqueness” (Hennig, 2015)

Ryan Reece (UCSC)

12



Is this significant?

Statistical and philosophical
question:
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Hypothesis testing

Null hypothesis (Hp) is
Valid/True Invalid/False

Table of error types

Type | error Correct inference

Reject s iti
(False Positive, a) | (True Positive, 1-8)

Judgment of Null Hypothesis (Hp) Correct inference
(True Negative, Type Il error

Fail to reject ,
(False Negative, B)

1-a)

Type | = True Hyp but reject it (False Positive)

Type Il = False Hy but fail to reject it (False Negative)

* Want to maximize power for a fixed false positive rate

* Particle physics has a tradition of claiming discovery at
50 = po=2.9x107 =1 in 3.5 million

* Makes exclusions with po = 5%, (95% CL “coverage”).

* Neyman-Pearson lemma (1933): L(x H )
the most powerful test for fixed 0

X is the likelihood ratio: L(ZIZ Hl)

Ryan Reece (UCSC)
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Cluster discovery
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* Cluster validation via hypothesis testing
p = & = p-value for Ho (5% for 95% CL)

* Neyman-Pearson theory of confidence intervals
q~ txe(x) = f(x[H1)/ f(x[Ho)

* Can give frequentist confidence that:
if the kind exists (H, is true), then it fits the data better,

if Ho is true, then the observed data is rare at some confidence level.
Ryan Reece (UCSC) |5



Natural kinds

* A natural kind is a natural (objective) grouping, as
opposed to an artificial (constructed) one.

* “The human experience that the reality outside
the observer’s control seems to make certain
distinctions between categories

inevitable” (Hennig, 2015).

* They carve nature at its joints.

* E.g.atomic elements, 4 DNA bases, ...

* Complex/evolving species are more problematic
(the species problem).

Gold (79Au)

58

Coyote

Carbon (¢C)

o
-3
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Convergence

* “In the physical sciences, the single “best”
theory, is usually much better than the others,
so selecting the single best law is not much
different from ALP. In the complex sciences—
such as sociology, psychology and geology—the
tenth best theory may be not far behind the
best, and ALP’s weighing of all of them can be B . e
considerably different from choosing the single Solomonoff
best one.’ [Solomonoff, R.|. (1996).]

B A
g%

* E.g. I/r> Newtonian gravity F~1/r2

e Effectiveness / abduction

force

R = radius of Earth

* The “right” approximation

> 3r

| | | | |
R 2R 3R 4R 5R
distance from centre of Earth

Ryan Reece (UCSC) |7



Summary

* Phrasing the scientific realism debate in machine learning
terms can sharpen the disucssion.

Data =% Features = Clustering = Natural Kinds ?

* Antirealist might say:
» Science finds empirically adequate patterns and regularities.
» No need to think they are objectively real.

» Machine learning will take this pattern finding out of human
hands.“The End of Theory” [Anderson, C. (2008). Wired.]

e Realist retort:

» Machine learning makes manifest that we can classify the world into kinds,
arguably (nearly) independent of human convention.

» ML is not the end of theory, in fact it is becoming one of our most powerful

tools for discovering natural laws.
Ryan Reece (UCSC) |18
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Mayo’s error statistics

“The challenge, if one is not to abandon
the view that science is characterized by
rational methods of hypothesis appraisal, is
either to develop more adequate models
of inductive inference, or else to find some *
account of scientific rationality.”

— Deborah Mayo (1996)
Error and the Growth of Experimental
Knowledge

Ryan Reece (UCSC)
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Examples of CNINs

* In 1990s,Yann LeCun pioneered
Convolutional Neural Nets (CNN)
and used them for Optical Character
Recognition.

* Inspired by animal cortex.

* Now it is standard in image
recognition and captioning, NLP,
computer vision, etc.
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Pigou et al. (2014). Sign Language Recognition
using Convolutional Neural Networks.
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Unsupervised learning

o EREsE
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; i Large; Small
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Ryan Reece (UCSC) [Huang, Loy, & Tang (2016)]
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Autoencoder
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Another VQ example

il
<’ \

FIGURE 14.9. Sir Ronald A. Fisher (1890 — 1962) was one of the founders
of modern day statistics, to whom we owe mazimum-likelihood, sufficiency, and
many other fundamental concepts. The image on the left 1s a 1024 x 1024 grayscale
image at 8 bits per pixel. The center image s the result of 2 X 2 block V(), using
200 code vectors, with a compression rate of 1.9 bits/pixel. The right image uses
only four code vectors, with a compression rate of 0.50 bits/pizel

-

Ryan Reece (UCSC) [Hastie, Tibshirani, & Friedman (2009). p. 514] 27



Large Hadron Collider

27 km cu'cumference e O pr'otons / bunch

1232 dipoles: I5m ,8.3 T e 1000 bunches/ beam

100 tons liquid He, 1.9 K e 20 MHz, 50 ns bunch spacing
p-p collisions at Js =7-8 TeV * 1-40 interactions / crossing
inst. luminosity = 1032-1034 cm-2s-! e 0.5 x 10? interactions / sec
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ATLAS Detector

ATLAS is a 7 story tall, 100 megapixel “camera”, taking 3-D pictures of proton-
proton collisions 40 million times per second, saving 10 million GB of data per
year, using a world-wide computing grid with over 100,000 CPUs. The
collaboration involves more than 3000 scientists and engineers.

44m
Humans — —~
f e) o . : |
(for scale) - collision point Muon Spectrometer
: rf*f' T
y y Calorimeter

, 4vp’ Tracker

Tile calorimeters

| ' LAr hadronic end-cap and
forward calorimeters
Pixel detector \

LAr electiromagnetic calorimeters

Toroid magnets

Muon chambers Solenoid magnet | Transition radiation tracker

Semiconductor tracker
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Datasets

The LHC has performed extremely well!!
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Typically 20-40 verticies
per bunch crossing

Latest analyses combine collision data at +/s=13TeV collected in the years
2015 and 2016, giving a total integrated lumi = 36 fb"!.
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What do we reconstruct?

’J ® Mmuons (main ObjeCtS)

* electrons & photons

' A ) '1 *‘}V ¢ jetS of hadrons
N LY * T-and b-tagged jets

Zz— ©
: 1
N ®* missing energy

) :
i N
¢ TN .'
’ -

\ How do we search?

N\ :" T-jet ATLAS Physics Groups

SM Higgs SUSY Exotics
W, Z, top,... | H2YY, ZZ, WW, .... | [tjets,Ytjets, ... W ...

Currently ATLAS has published 579+ papers



-LHC/CERN

3-level trigger
40 MHz — 100 kHz
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Building a model

N(expected) = N(correct-ID) + N(fake
(expected) = N(correct-ID) + N(fake)

 Bottom-up « Top-down , “data-driven”
* well-identified objects * various magic with data
have scale factors from depending on the analysis and
control regions your creativity

* estimated with detailed e side-band fit

Monte Carlo simulation
- 2000 ererrrrii o fake-factor method

& 1g00[ ATLAS Data 2010, \'s=7 TeV, [Ldt=40pb” -

0 -
) 1600—
2 1400F u,,, =3080=2 MeV
- u =3083x1 MeV
g 12005 &' — 132:2 Mev
W 1000 oy = 1341 MeV
800 o pata

600 — Fit

- [ JJy—ee MC

400 - J Background from fit

Data-driven
3 side-band fit
01 1.5 2 2.5 3 3.5 4
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NNs and BDTs in ATLAS

ATLAS pixel clustering with NN

* Using NNs and other MVAs
has been common in HEP
for years, for pattern
recognition, particle |1D,
event selection...

* In the past, always used
shallow NNs.

* ATLAS uses NNs in many
places, e.g. pixel clustering.

* Jet tagging for taus and b-
quarks has used NNs in
many iterations (also c, q/g).

Ryan Reece (UCSC)
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Higgs discovery

H2YY
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Higgs Confidence

Inconsistent with background only
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Systematics

X =+

measurement uncertainty
(Stat @ Syst1 @ Systz @ Systs)

[ AR

does not scale

B VN h VN with more data
How unlucky | : . |
could this be? How biased could this be?

statistical uncertainty: Poisson uncertainty that scales
as1/vN (for large V).

class-1 systematic: constrained in auxillary measurements in
the same dataset, scales as1/v/ N (for large ).

class-2 systematic: an uncertainy from an independent
measurement that you do not control.

class-3 systematic: something not accounted for in this
model (hopefully negligible).

Classification proposed by Sinervo (PhyStat2003) (cc-By 4.0) 2016 Ryan Reece philosophy-in-figures.tumblr.com

Ryan Reece (UCSC)

from: http://philosophy-in-fisures.tumblr.com/
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Knowledge = JTB-G

propositions

well-formed

C__

knowledge
false &

denial / false positives
lucky denial

(CC-BY 4.0) 2014 Ryan Reece philosophy-in-figures.tumblr.com
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Confidence Intervals

* A frequentist confidence interval is constructed such that,
given the model, if the experiment were repeated, each time creating
an interval, 95% (or other CL) of the intervals would contain the

true population parameter (i.e. the interval has =~95% coverage).

» They can be one-sided exclusions, e.g. m(Z’) > 2.0 TeV at 95% CL
» Two-sided measurements, e.g. my = 125.1 £ 0.2 GeV at 68% CL

» Contours in 2 or more parameters

* This is not the same as saying “There is a 95% probability that the
true parameter is in my interval”. Any probability assigned to a
parameter strictly involves a Bayesian prior probability.

» Bayes’ theorem: P(Theory | Data) « P(Data | Theory) P(Theory)

Ryan Reece (UCSC) ikelihood prior 39



