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Is this significant?

Statistical questions:
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Confidence Intervals

* A frequentist confidence interval is constructed such that,
given the model, if the experiment were repeated, each time creating
an interval, 95% (or other CL) of the intervals would contain the

true population parameter (i.e. the interval has =~95% coverage).

» They can be one-sided exclusions, e.g. X > 100.2 at 95% CL
» Two-sided measurements, e.g. X = 125.1 £ 0.2 at 68% CL

» Contours in 2 or more parameters

* This is not the same as saying “There is a 95% probability that the
true parameter is in my interval”. Any probability assigned to a
parameter strictly involves a Bayesian prior probability.

» Bayes’ theorem: P(Theory | Data) « P(Data | Theory) P(Theory)

Ryan Reece “likelihood” ‘prior’



MaxXimum
likelihood method



Maximum likelihood

Consider a Gaussian distributed measurement:

1 - - 2
Filali o) = ——; exp( = OQM) >

If we repeat the measurement, the joint PDF is just a product:

ZI?‘,[L, Hfl aj’t|:u7

The likelihood function is the same function as the PDF, only thought of
as a function of the parameters, given the data. The experiment is over.

L(p,o|T) = f(z|p, o)

he likelihood principle states that the best estimate of the true
parameters are the values which maximize the likelihood.
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Maximum likelihood

It Is often more convenient to consider the log likelihood, which has the
same maximum.

In L = 1an1 = Zlnfl
N2
— Z (—%IH(ZWOQ) (562202/1) >

Maximize:

Oln L x; — [i
p— :O
o = 2

= Y@-p=0 = =y m=z

i i
Which agrees with our intuition that the best estimate of the mean of a
Gaussian is the sample mean.
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Maximum likelihood

Note that in the case of a Gaussian PDF, maximizing likelihood is
equivalent to minimizing 2.

nL =" (-% In(270?) (562_05)2)

IS maximized when

IS minimized.

This was a simple example of what statisticians call point estimation.
Now we would like to quantify our error on this estimate.
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Variance of MLEs



variance

“True parameter” ,u

Maximum Likelihood
Estimator (MLE)

Assuming this model, how confident are we that
is close to (4 ? = What is the variance of [ ?
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variance

One would think that if the likelihood function varies rather slowly near
the peak, then there is a wide range of values of the parameters that are
consistent with the data, and thus the estimate should have a large error.

To see the behavior of the likelihood function near the peak, consider the
Taylor expansion of a general In L of some parameter 6, near its maximum
likelihood estimate 6:

0
A O In A 1 0%InL Ao
In L(6) = In L(6) + — é(9—9)+2! o é(e—e) + -
N——

—1/s2

Dropping the remaining terms would imply that

L(0) = L(0) exp (_(9 — 9)2>

Note that the In L(8) is parabolic.




variance

So if this were a good approximation, we would expect that the variance of
6 would be given by
~1
)

. 0%1n L

Vg =02 =s° = —
g 06?

It turns out that there is more truth to this than you would think, given by

an important theorem in statistics, the Cramér-Rao Inequality:

Vi) > (1 8b>2/E {_ &% 1In L @]

- 06 00?
An estimator’'s efficiency is defined to measure to what extent this
inequality Is equivalent:
,

o VP~ Tt
=
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variance

It can be shown that in the large sample limit:

Maximum likelihood estimators are unbiased and 100% efficient.

Therefore, in principle, one can calculate the variance of an ML estimator
0%1n L

with »
- (e[ %)

Calculating the expectation value would involve an analytic integration
over the PDFs of all our possible measurements, or a Monte Carlo
simulation of it. In practice, one usually uses the observed maximum

likelihood estimate as the expectation.
—1
é)

V©g] = 502

A _(ﬁzlnL
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variance

Let's go back to our simple example of a Gaussian likelihood to test this
method of calculating the ML estimator’s variance.

Vil = — ((9 In L >

O?
2 2 )2
0“1ln L _ (?_ Z (—%111(27‘(‘0‘2) o (xz ,u) )

op? o2 Z, 202
0 x; — [ -1 =N
Areerded

. o? %

Which many of you will recognize as the proper error on the sample mean.

If you are unfamiliar with it, we can actually derive it analytically in this
case.
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variance

Analytic variance of a gaussian: hlzlp, o) = ———
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variance

~ Viz] N2 Z“ +Z -

]
(N = N)p? + N(0® + 42)) — i

Which verifies the result we got from calculating derivatives of the
likelihood function. ,
. O?InL| \
Vg = —
¥ ( 06° é>

In practice, one usually doesn’'t calculate this analytically, but instead:

@ calculates the derivatives numerically, or

@ uses the Aln L or Ay? method, described now
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Variance by Ax°

Back to our Taylor expansion of In L:

Let

1 0%°InL

21 062
N ——
—1/05

In L(0) = In L() + (0 —6)>%+...

AlnL(0) =In L(#) — In L(0)

(0 —0)°

AlnL(6) ~ — 5
20@

0 — 0+ noy
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AlnL(0 + noy) = —

A n2
Aln L(0 £noy) = Y
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Variance by Ax”

<S>
&1
X

This is the most common definition of the 68% and 95% confidence

60 af?
~ X
Q

intervals:
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Variance by A\’

Recall that in the case that the PDF is Gaussian, the In L is just the y?
statistic.

2 2
X 2 _ (x —0)
lnL——?, X —Z

0-2
A N n2
AIHL(Q T n()'é) — 1I1L((9 T naé) — ll’leaX — —?
1/ 5. ) n?
— _5 (X (‘9 — TLO'é) - Xmin) _?

AX2((9A T naé) — n2

68%/ 1 05 Ax? =1
95%/ 2 050 Ax* =4 (3.84 for 20)
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Variance by Ax*

Multi-dimensional case

c — AXQ
C n=1 n=2 n=3
0.683 | 1.00 2.30 3.53
0.95 3.84 5.99 7.82
0.99 6.63 9.21 11.3

Ay? = 2.3
68.3%

Ax? = 5.99

95%
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Example:
measuring an

efficiency
& A/B testing




Efficiency

Out of n trials | measure k “conversions”

—~ 4

ek, n

Estimate the conversion -

rate its precision/confidence. <
3

Without a precision, we cannot 25

know if observed changes are

significant.
1.5

0.5
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Efficiency

Binomial Distribution MLE: & = E
' k
n _
f(k;n, p) (k) pF (1 —p) "
or° = np(l—p)
B (%)2 _ p(1-p)
Ogc — — —
n n
0.01) (0.99 0.01 _
n
n| oz |o/p
400 | 0.0050 | 50%
1 1.000 | 0.0032 | 32%
0. = 2.000 | 0.0022 | 22%
6‘ '
10 /1 10,000 | 0.0010 | 10%
10° | 0.0001 | 1%
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A/B testing

Example taken from here:
https://www.blitzresults.com/en/ab-tests/

Data like a |-dim, 4-bin histogram

ffff T S e Assume conversion rate
o ~ unchanged from A to B:
i N%NA‘ N L e 4 %,i_*)’%,;;\‘\(b, : : ' 1
NL s o Ny Ny  Nj+Nj
| Mot Cagpl | ol E= N = —
e L AL SRR NA NB NA T NB
A SYSPW .
Construct y? = (2= 0)
o u X = Z 3

2 (Na—Nae)®  ((Na— Ny —Na(l—e)F
NAE NA(l—E)
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A/B testing

Original

Visitors without A: 960

Conversion
Visitors with C: 40
Conversion
Sum 1000

Plugin above values gives:

Remember:

Ryan Reece

Xo) (680/0) -
20 (95%) : 3.84
30 (99%) : 6.63

Comparison Sum
variant
B:1120 2080
D: 80 120
1200 2200
Ax? =752
— >99% CL
— significant improvement
in B model
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Hypothesis test

True value under the null hypothesis
and most likely observation

'

95% statistical
significance threshold

Observed p-value
(statistical significance)

Observed

very unlikel
ry Y result (value)

observations

very unlikely
observations

probability of observation

set of possible results
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Take-aways

MLEs are the best

Don’t just calculate MLE, find its variance!
Quantify significance with a confidence interval

Under many common assumptions
2

N\2
lnL:—X—, X222($ 2(9) AXQ
2 o |0 (68%) : 1

and one can calculate Ay? to 20 (952/0) : 3.84
determine confidence intervals/contours. 99 (99%) : 6.63

In the simplest case of measuring an efficiency, A/B-testing
amounts to a 4-term X2 that can be calculated by hand.

If the A\? is large, the change is significant!

Ryan Reece
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Efficiency

Other examples with numbers:

Method Numerator | Denominator Mean (Mode) | Variance | Uncertainty o
Poisson 1 45 0.0222 0.00050 0.02246
Binomial 1 45 0.0222 0.00043 0.02197
Bayesian 1 45 0.04255 (0.0222) | 0.00085 0.02913
Method Numerator | Denominator Mean (Mode) | Variance | Uncertainty o
Poisson 100 106 0.9433 | 0.01729 0.13151
Binomial 100 106 0.9433 | 0.00050 0.02244
Bayesian 100 106 0.9352 (0.9433) | 0.00056 0.02358

Ryan Reece
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Hypothesis testing

* Null hypothesis, Ho: the SM

Null hypothesis (Hp) is

e Alternative h)’POtheSiS, . Table of error types Valid/True Invalid/False
some hew Ph)’SiCS Reject Typele?r-ror Correct ir‘mf'erence
(False Positive, a) | (True Positive, 1-8)
¢ T)’Pe-l error. Judgment of Null Hypothesis (Ho) Correct inference
false positive rate (X) Fail to reject ”’“e:‘ja"ve’ ok oo 1

PY _ .
T)’Pe I I err.or° Type | = True Hp but reject it (False Positive)
false negat|ve rate (B) Type Il = False Hp but fail to reject it (False Negative)

e Power: |-
* Want to maximize power for a fixed false positive rate

* Particle physics has a tradition of claiming discovery at
50 = po=2.9%X107 =1 in 3.5 million, and presents

exclusion with po = 5%, (95% CL “coverage”).

* Neyman-Pearson lemma (1933): T (| H
the most powerful test for fixed (x| Ho)

X is the likelihood ratio: L(:C Hl)
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Power & Significance

Power: The probability of rejecting the null hypothesis when it
is false. You want to design your experiment to have a power

near 1.
Significance: The probability of failing to reject the null
hypothesis when it is true. You want to design your

experiment so you have significance or p-values near zero.

Adapted from “The Cambridge Dictionary of Statistics”, B.S.
Everitt, 2nd Edition, Cambridge, 2005 printing.
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Variance by Ax°

What if L(6#) is not Gaussian, i.e. In L(6) is not parabolic?
Aln L
A

Qr% '_ qu% Al{lL OQP C))OFQ)

Na
&'1
X
&

Likelihood functions have an invariance property, such that if g(z) is a
monotonic function, then the maximum likelihood estimate of g(f) is g(8).
In principle, one can find a change of variables function ¢(8), for which the
In L(g(#)) is parabolic as a function of g(#). Therefore, using the
invariance of the likelihood function, one can make inferences about a
parameter of a non-Gaussian likelihood function without actually finding

such a transformation [James p. 234].

Ryan Reece
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Systematics

measurement uncertainty
(Stat @ Syst1 @ Systz @ Systs)

[ SR S

X — X 1 does not scale
VN VN with more data
How unlucky | : . |
could this be? How biased could this be?

e statistical uncertainty: Poisson uncertainty that scales
as1/vN (for large V).

e class-1 systematic: constrained in auxillary measurements in
the same dataset, scales as1/v/ N (for large ).

e class-2 systematic: an uncertainy from an independent
measurement that you do not control.

e class-3 systematic: something not accounted for in this
model (hopefully negligible).

Classification proposed by Sinervo (PhyStat2003) (cc-By 4.0) 2016 Ryan Reece philosophy-in-figures.tumblr.cor

from: http://philosophy-in-fisures.tumblr.com/
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