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Which verifies the result we got from calculating derivatives of the
likelihood function.
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In practice, one usually doesn’t calculate this analytically, but instead:

calculates the derivatives numerically, or

uses the � lnL or ��
2 method, described now
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FIG. 1. Invariant or transverse mass distributions for the selected candidate events, the total background and the signal expected
in the following channels: (a) H → γγ, (b) H → ZZ(∗) → ℓ+ℓ−ℓ+ℓ− in the entire mass range, (c) H → ZZ(∗) → ℓ+ℓ−ℓ+ℓ− in
the low mass range, (d) H → ZZ → ℓ+ℓ−νν, (e) b-tagged selection and (f) untagged selection for H → ZZ → ℓ+ℓ−qq, (g) H →
WW (∗) → ℓ+νℓ−ν+0-jets, (h) H → WW (∗) → ℓ+νℓ−ν+1-jet, (i) H → WW (∗) → ℓ+νℓ−ν+2-jets, (j) H → WW → ℓνqq′+0-
jets, (k) H → WW → ℓνqq′+1-jet and (l) H → WW → ℓνqq′+2-jets. The H → WW (∗) → ℓ+νℓ−ν+2-jets distribution is
shown before the final selection requirements are applied.

Is this significant?

3[arxiv:1207.0319]

• How can we calculate the  
best-fit estimate of some  
parameter?

‣ Point estimation and  
confidence intervals

• How can we be precise  
and rigorous about how  
confident we are that a  
model is wrong?

‣ Hypothesis testing

3 events

Has a local p0 of ≈ 2%

Statistical questions:
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Confidence Intervals
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• A frequentist confidence interval is constructed such that, 
given the model, if the experiment were repeated, each time creating 
an interval, 95% (or other CL) of the intervals would contain the 
true population parameter (i.e. the interval has ≈95% coverage).

‣ They can be one-sided exclusions, e.g. X > 100.2 at 95% CL

‣ Two-sided measurements,  e.g. X = 125.1 ± 0.2 at 68% CL

‣ Contours in 2 or  more parameters 
 

• This is not the same as saying “There is a 95% probability that the 
true parameter is in my interval”.  Any probability assigned to a 
parameter strictly involves a Bayesian prior probability.

• Bayes’ theorem: P(Theory | Data) ∝ P(Data | Theory) P(Theory)
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We’ll discuss how one goes from the statistic on the left to the plot on the
right.
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Primer on the Maximum Likelihood Method

Consider a Gaussian distributed measurement:

f1(x|µ,�) =
1p

2⇡�2
exp

✓
�(x� µ)2

2�2

◆

If we repeat the measurement, the joint PDF is just a product:

f(~x|µ,�) =
Y

i

f1(xi|µ,�)

The likelihood function is the same function as the PDF, only thought of
as a function of the parameters, given the data. The experiment is over.

L(µ,�|~x) = f(~x|µ,�)

The likelihood principle states that the best estimate of the true
parameters are the values which maximize the likelihood.
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It is often more convenient to consider the log likelihood, which has the
same maximum.
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Which agrees with our intuition that the best estimate of the mean of a
Gaussian is the sample mean.
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Note that in the case of a Gaussian PDF, maximizing likelihood is
equivalent to minimizing �

2.

lnL =
X

i

✓
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is maximized when

�
2 =

X
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(x� µ)2

�2

is minimized.

This was a simple example of what statisticians call point estimation.
Now we would like to quantify our error on this estimate.
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Consider a Gaussian distributed measurement:

f1(x|µ,�) =
1p

2⇡�2
exp

✓
�(x� µ)2

2�2

◆

If we repeat the measurement, the joint PDF is just a product:

f(~x|µ,�) =
Y

i

f1(xi|µ,�)

The likelihood function is the same function as the PDF, only thought of
as a function of the parameters, given the data. The experiment is over.

L(µ,�|~x) = f(~x|µ,�)

The likelihood principle states that the best estimate of the true
parameters are the values which maximize the likelihood.

Ryan D. Reece (Penn) Likelihood Functions for SUSY ryan.reece@cern.ch 5 / 24

It is often more convenient to consider the log likelihood, which has the
same maximum.

lnL = ln
Y

f1 =
X

ln f1

=
X

i

✓
�1

2
ln(2⇡�

2)� (xi � µ)2

2�2

◆

Maximize:
@ lnL

@µ
=

X

i

xi � µ̂

�2
= 0

)
X

i

(xi � µ̂) = 0, ) µ̂ =
1
N

X

i

xi = x̄

Which agrees with our intuition that the best estimate of the mean of a
Gaussian is the sample mean.

Ryan D. Reece (Penn) Likelihood Functions for SUSY ryan.reece@cern.ch 6 / 24

“True parameter”

Maximum Likelihood  
Estimator (MLE)
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Assuming this model, how confident are we that  
is close to     ?  ➡ What is the variance of     ?

?
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One would think that if the likelihood function varies rather slowly near
the peak, then there is a wide range of values of the parameters that are
consistent with the data, and thus the estimate should have a large error.

To see the behavior of the likelihood function near the peak, consider the
Taylor expansion of a general lnL of some parameter ✓, near its maximum
likelihood estimate ✓̂:

lnL(✓) = ln L(✓̂) +
⇢

⇢
⇢

⇢⇢>
0

@ lnL

@✓

����
✓̂

(✓ � ✓̂) +
1
2!

@
2 lnL

@✓2

����
✓̂| {z }

�1/s2

(✓ � ✓̂)2 + · · ·

Dropping the remaining terms would imply that

L(✓) = L(✓̂) exp

 
�(✓ � ✓̂)2

2s2

!

Note that the lnL(✓) is parabolic.
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So if this were a good approximation, we would expect that the variance of
✓̂ would be given by

V [✓̂] ⌘ �
2
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= s
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2 lnL
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����
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It turns out that there is more truth to this than you would think, given by
an important theorem in statistics, the Cramér-Rao Inequality:
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An estimator’s e�ciency is defined to measure to what extent this
inequality is equivalent:
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It can be shown that in the large sample limit:

Maximum likelihood estimators are unbiased and 100% e�cient.

Therefore, in principle, one can calculate the variance of an ML estimator
with

V [✓̂] = �
✓

E


@

2 lnL

@✓2

����
✓̂

�◆�1

Calculating the expectation value would involve an analytic integration
over the PDFs of all our possible measurements, or a Monte Carlo
simulation of it. In practice, one usually uses the observed maximum
likelihood estimate as the expectation.
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Let’s go back to our simple example of a Gaussian likelihood to test this
method of calculating the ML estimator’s variance.
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Which many of you will recognize as the proper error on the sample mean.
If you are unfamiliar with it, we can actually derive it analytically in this
case.
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To find E[x2], consider
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Analytic variance of a gaussian:

Primer on the Maximum Likelihood Method

Consider a Gaussian distributed measurement:

f1(x|µ,�) =
1p

2⇡�2
exp

✓
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If we repeat the measurement, the joint PDF is just a product:

f(~x|µ,�) =
Y

i

f1(xi|µ,�)

The likelihood function is the same function as the PDF, only thought of
as a function of the parameters, given the data. The experiment is over.

L(µ,�|~x) = f(~x|µ,�)

The likelihood principle states that the best estimate of the true
parameters are the values which maximize the likelihood.
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Which verifies the result we got from calculating derivatives of the
likelihood function.

V [✓̂] = �
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In practice, one usually doesn’t calculate this analytically, but instead:

calculates the derivatives numerically, or

uses the � lnL or ��
2 method, described now
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Back to our Taylor expansion of lnL:

lnL(✓) = ln L(✓̂) +
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� lnL(✓̂ ± n�✓̂) = �n
2

2

This is the most common definition of the 68% and 95% confidence
intervals:

68%/ 1 �✓̂: � lnL = �1
2

95%/ 2 �✓̂: � lnL = �2
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Recall that in the case that the PDF is Gaussian, the lnL is just the �
2

statistic.
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Qc

c n=1 n=2 n=3
0.683 1.00 2.30 3.53
0.95 3.84 5.99 7.82
0.99 6.63 9.21 11.3

A note about confidence contours/intervals

A 95% confidence contour doesn’t mean that the true value of the
parameter is in the contour with 95% probabilty. That would be a
Bayesian probabilty (a probability of belief). It means that if the model is
correct, we have properly estimated our errors, and if we were to repeat
the experiment over and over again, each time creating a new contour,
then the contour would cover the true parameter in 95% of the
experiments (a frequentist probability).
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Efficiency
Bayesian Statistics: Mode Vs Mean

Louise Heelan Calc Efficiency Uncertainties 14

Out of n trials I measure k “conversions”

Estimate the conversion 
rate its precision/confidence.

Without a precision, we cannot
know if observed changes are 
significant.



Ryan Reece 23

Efficiency
Measuring Occupancy ⇠ Measuring a Coin’s
Fairness

Binomial Distribution

f(k;n, p) =
✓

n

k

◆
pk (1� p)n�k

�k
2 = n p (1� p)

�o
2 =

⇣�k

n

⌘2
=

p (1� p)
n

p ⇡ 0.01 ) �o
2 =

(0.01) (0.99)
n

⇡ 0.01
n

�o =
1

10
p

n
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MLE:

"

"̂ =
n

k

"

"If

Number of Events Needed for some Precision

for p = 0.01

n �o �o/p

400 0.0050 50%
1,000 0.0032 32%
2,000 0.0022 22%

10,000 0.0010 10%
106 0.0001 1%

Ryan D. Reece (Penn) TRT Low Threshold Optimization ryan.reece@gmail.com 20 / 28

" "
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A/B testing
Example taken from here:  
https://www.blitzresults.com/en/ab-tests/

Recall that in the case that the PDF is Gaussian, the lnL is just the �
2

statistic.

lnL = ��
2

2
, �

2 =
X (x� ✓)2

�2

� lnL(✓̂ ± n�✓̂) = lnL(✓̂ ± n�✓̂)� lnLmax = �n
2

2

) �1
2

⇣
�

2(✓̂ ± n�✓̂)� �
2
min

⌘
= �n

2

2

��
2(✓̂ ± n�✓̂) = n

2

68%/ 1 �✓̂: ��
2 = 1

95%/ 2 �✓̂: ��
2 = 4
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Data like a 1-dim, 4-bin histogram

Construct 

�2 =
(N 0

A �NA ")2

NA "
+

((NA �N 0
A)�NA (1� "))2

NA (1� ")

+ (A ! B)

" =
N 0

A

NA
' N 0

B

NB
' N 0

B +N 0
B

NA +NB

Assume conversion rate 
unchanged from A to B:
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A/B testing
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= 7.52

Remember:
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Which verifies the result we got from calculating derivatives of the
likelihood function.

V [✓̂] = �
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@✓2
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◆�1

In practice, one usually doesn’t calculate this analytically, but instead:

calculates the derivatives numerically, or

uses the � lnL or ��
2 method, described now
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1σ (68%) : 1
2σ (95%) : 3.84
3σ (99%) : 6.63

→ >99% CL  
→ significant improvement  
     in B model

Plugin above values gives:
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Hypothesis test
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Take-aways
• MLEs are the best

• Don’t just calculate MLE, find its variance!

• Quantify significance with a confidence interval

• Under many common assumptions 
 
 
 
and one can calculate           to  
determine confidence intervals/contours.

• In the simplest case of measuring an efficiency, A/B-testing 
amounts to a 4-term      that can be calculated by hand.

• If the           is large, the change is significant!
27
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EfficiencyResults

o example of different techniques for my top trigger analysis (105200, r635, ≈30k
events)
o two examples of a particular bin (low and high statistics)

Method Numerator Denominator Mean (Mode) Variance Uncertainty σ

Poisson 1 45 0.0222 0.00050 0.02246
Binomial 1 45 0.0222 0.00048 0.02197
Bayesian 1 45 0.04255 (0.0222) 0.00085 0.02913

Method Numerator Denominator Mean (Mode) Variance Uncertainty σ

Poisson 100 106 0.9433 0.01729 0.13151
Binomial 100 106 0.9433 0.00050 0.02244
Bayesian 100 106 0.9352 (0.9433) 0.00056 0.02358

Louise Heelan Calc Efficiency Uncertainties 15

Other examples with numbers:
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Hypothesis testing
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• Null hypothesis, H0: the SM

• Alternative hypothesis, H1:  
some new physics

• Type-I error:   
false positive rate (α)

• Type-II error:  
false negative rate (β)

• Power: 1-β
• Want to maximize power for a fixed false positive rate

• Particle physics has a tradition of claiming discovery at  
5σ ⇒ p0 = 2.9⨉10-7 = 1 in 3.5 million, and presents  
exclusion with p0 = 5%, (95% CL “coverage”).

• Neyman-Pearson lemma (1933):  
the most powerful test for fixed 
 α is the likelihood ratio:

Kyle Cranmer (NYU) CERN Academic Training, Feb 2-5, 2009 76

The Neyman-Pearson Lemma

The region W that minimizes the probability of wrongly accepting
the H0 is just a contour of the Likelihood Ratio:

L(x|H0)

L(x|H1)
> kα

This is the goal!

The problem is we don’t have access to L(x|H0) & L(x|H1)

April 11, 2005

EFI High Energy Physics Seminar

Modern Data Analysis Techniques

for High Energy Physics (page 7)

Kyle Cranmer

Brookhaven National Laboratory

The Neyman-Pearson Lemma

Prediction via Monte Carlo Simulation

The enormous detectors are still being constructed, but we have detailed
simulations of the detectors response.

L(x|H0) =
W

W

H
µ+

µ−

⊕

The advancements in theoretical predictions, detector simulation, tracking,
calorimetry, triggering, and computing set the bar high for equivalent
advances in our statistical treatment of the data.

September 13, 2005

PhyStat2005, Oxford
Statistical Challenges of the LHC (page 6) Kyle Cranmer

Brookhaven National Laboratory

Tuesday, February 3, 2009

Neyman
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Power & Significance
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Variance by
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What if L(✓) is not Gaussian, i.e. lnL(✓) is not parabolic?

Likelihood functions have an invariance property, such that if g(x) is a
monotonic function, then the maximum likelihood estimate of g(✓) is g(✓̂).
In principle, one can find a change of variables function g(✓), for which the
lnL(g(✓)) is parabolic as a function of g(✓). Therefore, using the
invariance of the likelihood function, one can make inferences about a
parameter of a non-Gaussian likelihood function without actually finding
such a transformation [James p. 234].
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Systematics

33from: http://philosophy-in-figures.tumblr.com/


