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Mcculloch & Pitts (1943)

If we are trying to produce an intelligent machine, and are following the human

model as closely as we can, we should begin with a machine with very little capacity

to carry out elaborate operations or to react in a disciplined manner to orders

(taking the form of interference). Then by applying appropriate interference,

mimicking education, we should hope to modify the machine until it could be

relied on to produce deWnite reactions to certain commands. This would be the

beginning of the process. I will not attempt to follow it further now.

8. Organising unorganised machinery

Many unorganised machines have conWgurations such that if once that con-

Wguration is reached, and if the interference thereafter is appropriately restricted,

the machine behaves as one organised for some deWnite purpose. For instance

the B-type machine shown below was chosen at random.
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Figure 10.3.

If the connections numbered 1, 3, 6, 4 are in condition ii) initially and connec-

tions 2, 5, 7 are in condition i), then the machine may be considered to be one

for the purpose of passing on signals with a delay of 4 moments. This is a

particular case of a very general property of B-type machines (and many other

types), viz. that with suitable initial conditions they will do any required job,

given suYcient time and provided the number of units is suYcient. In particular

with a B-type unorganised machine with suYcient units one can Wnd initial

conditions which will make it into a universal machine with a given storage

capacity. (A formal proof to this eVect might be of some interest, or even a

demonstration of it starting with a particular unorganised B-type machine, but I

am not giving it as it lies rather too far outside the main argument.)

With these B-type machines the possibility of interference which could set in

appropriate initial conditions has not been arranged for. It is however not

diYcult to think of appropriate methods by which this could be done. For

instance instead of the connection
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The problem of induction
• We justify inferences with

‣ deduction: following by definition,  
logic, mathematics, “relations of ideas”

‣ induction: generalizing a universal based on  
limited data, drawing generalized conclusions  
from “matters of fact”

• Can we trust that “instances of which we  
have had no experience resemble those 
of which we have had experience”?  
(Hume, 1739)

• Induction is always susceptible possible  
“black swans”.

• Russell’s Thanksgiving turkey.
3

David Hume (1711-1776)
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Sympathy for positivism
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“Carnap never abandoned his belief that science and 
philosophy should be founded on a bedrock of logic… His 
unshakeable support of the primacy of both deductive and 
inductive logic made his position an increasingly isolated 
philosophy during the latter part of the Twentieth Century.

Meanwhile, technology has moved on… The agency of 
machines will steadily increase: think of robots, unmanned 
vehicles, industrial processes… so Carnap’s approach will 
become increasingly relevant, because highly sophisticated 
machine agents will certainly act on a basis of logic…
Carnap’s faith in logic as the basis of one form of agency 
will have been vindicated.”

[MacFarlane, A. (2017). Rudolf Carnap (1891-1970). Philosophy Now, 118.]

Carnap

https://philosophynow.org/issues/118/Rudolf_Carnap_1891-1970
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Machine learning
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3

Fig. 1.1 We would like the raw input image to be transformed into gradually higher levels of
representation, representing more and more abstract functions of the raw input, e.g., edges,
local shapes, object parts, etc. In practice, we do not know in advance what the “right”
representation should be for all these levels of abstractions, although linguistic concepts
might help guessing what the higher levels should implicitly represent.

Consider for example the task of interpreting an input image such as
the one in Figure 1.1. When humans try to solve a particular AI task
(such as machine vision or natural language processing), they often
exploit their intuition about how to decompose the problem into sub-
problems and multiple levels of representation, e.g., in object parts
and constellation models [138, 179, 197] where models for parts can be
re-used in different object instances. For example, the current state-
of-the-art in machine vision involves a sequence of modules starting
from pixels and ending in a linear or kernel classifier [134, 145], with
intermediate modules mixing engineered transformations and learning,

[Bengio (2009) . p. 3]

• Pattern recognition

• Classification

• Data reduction

• Derivation of high-level 
representation

• Hypothesis testing

The automation of 
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Neural Nets
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• input varaiables, xi

• weights, wij

• activation function, Kj(·)  
(sigmoid, tanh, ...)

• output variables, yj

• a learning rule to update the weights.

• a learning step is called an “epoch.”

• Optimizing the weights is called “training.” 

Neural nets have:

394 Neural Networks
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FIGURE 11.3. Plot of the sigmoid function σ(v) = 1/(1+exp(−v)) (red curve),
commonly used in the hidden layer of a neural network. Included are σ(sv) for
s = 1

2 (blue curve) and s = 10 (purple curve). The scale parameter s controls
the activation rate, and we can see that large s amounts to a hard activation at
v = 0. Note that σ(s(v − v0)) shifts the activation threshold from 0 to v0.

Notice that if σ is the identity function, then the entire model collapses
to a linear model in the inputs. Hence a neural network can be thought of
as a nonlinear generalization of the linear model, both for regression and
classification. By introducing the nonlinear transformation σ, it greatly
enlarges the class of linear models. In Figure 11.3 we see that the rate of
activation of the sigmoid depends on the norm of αm, and if ∥αm∥ is very
small, the unit will indeed be operating in the linear part of its activation
function.

Notice also that the neural network model with one hidden layer has
exactly the same form as the projection pursuit model described above.
The difference is that the PPR model uses nonparametric functions gm(v),
while the neural network uses a far simpler function based on σ(v), with
three free parameters in its argument. In detail, viewing the neural network
model as a PPR model, we identify

gm(ωT
mX) = βmσ(α0m + αT

mX)
= βmσ(α0m + ∥αm∥(ωT

mX)), (11.7)

where ωm = αm/∥αm∥ is the mth unit-vector. Since σβ,α0,s(v) = βσ(α0 +
sv) has lower complexity than a more general nonparametric g(v), it is not
surprising that a neural network might use 20 or 100 such functions, while
the PPR model typically uses fewer terms (M = 5 or 10, for example).

Finally, we note that the name “neural networks” derives from the fact
that they were first developed as models for the human brain. Each unit
represents a neuron, and the connections (links in Figure 11.2) represent
synapses. In early models, the neurons fired when the total signal passed to
that unit exceeded a certain threshold. In the model above, this corresponds

• “Deep” networks have  
multiple hidden layers

• Can be used for classification or 
regression.

• Similar to other multivariate 
techniques, cutting on a classifier 
makes some acceptance blob in 
x-space.

DRAFT: March 13, 2017 R. Reece

Figure 2: ANN dependency graph (Wikimedia Commons).

TODO: profile likelihood ratio statistic23. Under the conditions of Wilks’ theorem24, q(◊)
follows a ‰2 distribution with one degree of freedom when the null hypothesis is true. TODO:
Wald25.

3 Machine learning

3.1 Neural networks

Similar to the constraints of our brief overview of hypothesis testing, we shall be brief in
introducing concepts in machine learning. Excellent reviews of the history and theory of
deep learning including more details and references have been written by leading experts in
the field26.

TODO:

• Mcculloch (1943).
• Turing (2004).

TODO: define neural network.

f(x) = K

A
ÿ

i

wi gi(x)

B

(2)

23Cowan, Cranmer, Gross, & Vitells (2011) and Cowan (2016).
24Wilks (1938).
25Wald (1943).
26See, for example, Bengio (2009), LeCun, Bengio, & Hinton (2015), and Schmidhuber (2015).
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Statistics, machine learning, and realism DRAFT: March 13, 2017

f(x) = K

Q
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i

wg
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wh
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R

b

R

b (3)

Note that if neural nets didn’t have the non-linear activation functions, they would be
equivalent to linear matrix multiplication:

f(x) ?≥ wg
i wh

ij xj (4)

TODO: define deep neural networks and deep learning.

Neocognitron, CNNs27. CNNs for optical character recognition of handwriting28.

TODO: Wang29, Copeland30, Krizhevsky31.

3.2 Supervised learning

TODO:

• define: supervised classification
• classification
• regression
• cite examples

Aurisano32, Guest33, Louppe34.

3.3 Unsupervised learning

TODO:

• define: unsupervised classification
• relation to clustering
• novelty/anomaly detection
• autoencoders
• feature extraction

27Fukushima (1980).
28LeCun, Y. et al. (1989) and LeCun, Bottou, Bengio, & Ha�ner (1998).
29Wang, Raj, & Xing (2017).
30Copeland & Proudfoot (1996).
31Krizhevsky, Sutskever, & Hinton (2012).
32Aurisano, A. et al. (2016).
33Guest, D. et al. (2016).
34Louppe, Cho, Becot, & Cranmer (2017).
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Why go deep?

7

[Forbes/Google]

• Multiple layers allow for 
specialization and feature 
extraction.

• Now in “Deep 
Learning Renaissance”

1. Better training: techniques and tools (e.g. SGD, layerwise training, 
smarter NN structures).

2. Better hardware: multicore, GPUs, bigger data centers, cloud computing, 
coming: neuromorphic computing.

3. More training: bigger datasets, search, the internet, open science.
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Learning to identify things

8

ImageNet competition example
µ

jet

Is end-to-end learning from the raw data the future of particle 
physics reconstruction?

Future of ATLAS?
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Learning to identify things
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µ

τ-jet

jet

jet

Future of ATLAS?

Is end-to-end learning from the raw data the future of particle 
physics reconstruction?

ImageNet competition example
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Deep Learning in HEP
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Baldi et al. (2014). Searching for Exotic Particles  
in High-Energy Physics with Deep Learning.

Baldi et al. (2015). Enhanced Higgs to τ+τ−  
Search with Deep Learning.

X-view Y-view
(a) ⌫µ CC interaction.

X-view Y-view
(b) ⌫e CC interaction.

X-view Y-view
(c) NC interaction.

Figure 5. Example CNN image input
Input given to the CNN for an example ⌫µ CC interaction (top), ⌫e CC interaction (middle), and ⌫
NC interaction (bottom). Hits in the X view of the NOvA detector are shown on the left, and hits
in the Y view are shown on the right.
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[1402.4735]

[1410.3469]

Aurisano et al. (2016).  A Convolutional Neural  
Network Neutrino Event Classifier.

out performs NOvA’s conventional reconstruction

[1604.01444]

• Deep learning does best 
with raw data and when 
there are unexploited 
features.

• raw channels→tagging

• basic kinematics→features

Guest et al. (2016). Jet Flavor 
Classification in HEP with DNNs. 
[1607.0863]
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FIG. 6: Signal e�ciency versus background rejection (inverse of e�ciency) for deep networks trained on track-level, vertex-level
or expert-level features. The top pane shows the performance for b-quarks versus light-flavor quarks, the bottom pane for
b-quarks versus c-quarks.

note that these conclusions apply to the expert strate-
gies considered here, and in the case of the simulated
environment we have studied; however, we feel that both
are representative of the current state-of-the-art.

The task remains a challenge for deep networks.

Networks which use only the lower-level information do
not match the performance of networks which use the
higher-level information. Since the higher-level features
are strict functions of the lower-level features, the lower-
level features are a superset of the information contained
in the high-level features. The performance of the net-
works which use the high-level features then provides

a baseline against which to measure the ability of the
network to extract the relevant information in the more
di�cult higher-dimensional space of lower-level features.
Networks using only track information do not match
the performance of those which use only the high-level
features (but note that track-only networks outperform
vertex-only networks, giving a clue as to the area of dif-
ficulty).

Networks using track and vertex information

outperform those with expert features. Networks
trained with track and vertex information but without
the benefit of expert-level guidance and dimensional re-
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outdoors

Unsupervised learning
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Raw input features clusters in feature space

“The typical vectors we use to represent concepts like images have about 4,000 dimensions,” he says. “So, 
basically, it is a list of 4,000 numbers that characterises everything about an image.” Vectors can describe an 
image, a piece of text or human interests. Reduced to a number, it’s easy for computers to search and 
compare. If the interests of a person, represented by a vector, match the vector of an image, the person will 
likely enjoy the image. “Basically, it reduces reasoning to geometry,” he says. 

— Jeff Goodell of Rolling Stone quoting ML researcher Yann LeCunn at NYU and Facebook 
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Vector Quantization (VQ)
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Cluster sensitivity
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OR ?

• Any experiment has empirical limits.

‣ To discover structure within clusters (split them) may require 
better measurement precision, and/or better training samples, 
and/or exposure to new features (y-dimensions).

• Clustering is task, algorithm, or model dependent (in the case 
of maximum likelihood fitting).

‣ Not everyone agrees with me:  “It seems to me that a misguided 
desire for uniqueness” (Hennig, 2015)
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FIG. 1. Invariant or transverse mass distributions for the selected candidate events, the total background and the signal expected
in the following channels: (a) H → γγ, (b) H → ZZ(∗) → ℓ+ℓ−ℓ+ℓ− in the entire mass range, (c) H → ZZ(∗) → ℓ+ℓ−ℓ+ℓ− in
the low mass range, (d) H → ZZ → ℓ+ℓ−νν, (e) b-tagged selection and (f) untagged selection for H → ZZ → ℓ+ℓ−qq, (g) H →
WW (∗) → ℓ+νℓ−ν+0-jets, (h) H → WW (∗) → ℓ+νℓ−ν+1-jet, (i) H → WW (∗) → ℓ+νℓ−ν+2-jets, (j) H → WW → ℓνqq′+0-
jets, (k) H → WW → ℓνqq′+1-jet and (l) H → WW → ℓνqq′+2-jets. The H → WW (∗) → ℓ+νℓ−ν+2-jets distribution is
shown before the final selection requirements are applied.

Is this significant?

13[arxiv:1207.0319]

• How can we be precise  
and rigorous about how  
confident we are that a  
model is wrong?

‣ Hypothesis testing
3 events

Has a local p0 of ≈ 2%

Statistical and philosophical  
question:
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• Want to maximize power for a fixed false positive rate

• Particle physics has a tradition of claiming discovery at  
5σ ⇒ p0 = 2.9⨉10-7 = 1 in 3.5 million

• Makes exclusions with p0 = 5%, (95% CL “coverage”).

• Neyman-Pearson lemma (1933):  
the most powerful test for fixed 
 α is the likelihood ratio:

Kyle Cranmer (NYU) CERN Academic Training, Feb 2-5, 2009 76

The Neyman-Pearson Lemma

The region W that minimizes the probability of wrongly accepting
the H0 is just a contour of the Likelihood Ratio:

L(x|H0)

L(x|H1)
> kα

This is the goal!

The problem is we don’t have access to L(x|H0) & L(x|H1)

April 11, 2005

EFI High Energy Physics Seminar

Modern Data Analysis Techniques

for High Energy Physics (page 7)

Kyle Cranmer

Brookhaven National Laboratory

The Neyman-Pearson Lemma

Prediction via Monte Carlo Simulation

The enormous detectors are still being constructed, but we have detailed
simulations of the detectors response.

L(x|H0) =
W

W

H
µ+

µ−

⊕

The advancements in theoretical predictions, detector simulation, tracking,
calorimetry, triggering, and computing set the bar high for equivalent
advances in our statistical treatment of the data.

September 13, 2005

PhyStat2005, Oxford
Statistical Challenges of the LHC (page 6) Kyle Cranmer

Brookhaven National Laboratory

Tuesday, February 3, 2009

Neyman

Hypothesis testing
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Cluster discovery
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ClusteringIssues:DistanceMetrics

Distancemetricsstronglyinfluenceclustershapes:

•Normalizeddot-product:
xty

∥x∥∥y∥
•Euclidean:∥x−µµµi∥2=(x−µµµi)t(x−µµµi)

•WeightedEuclidean:(x−µµµi)tW(x−µµµi)(e.g.,W=ΣΣΣ−1)

•Minimumdistance(chain):mind(x,xi),xiϵCi

•Representationspecific...
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Critical regions of (a) A two-tailed test, (b) A right-tailed test, and (c) A left-tailed test. q0
a is the

a percentile of q under H0.1

In practice, the final decision to reject or accept H0 is based partially on the pre-
ceding statements as well as on other factors, such as the cost of a wrong decision.
Thus, the terms “accept”and “reject”H0 must be interpreted accordingly.

The probability density function (pdf) of the statistic q, under H0, for most of
the statistics used in practice has a single maximum and the D̄" region is either a
half-line or the union of two half-lines. These assumptions have also been adopted
here. Figure 16.1 shows the three possible cases for D̄". In the first case, D̄" is the
union of two half-lines. Such a test is known as a two-tailed statistical test. The
other two tests are called one-tailed statistical tests, because D̄" consists of a single
half-line. Figure 16.1a is an example of a two-tailed statistical test2 and Figures 16.1b
and 16.1c are examples of a right- and a left-tailed test, respectively.

In many practical cases the exact form of the pdf of a statistic q, under a given
hypothesis, is not available and it is difficult to obtain. In the sequel,we discuss two
methods for estimating pdf’s via simulations.

■ Monte Carlo techniques [Shre 64, Sobo 84] rely on simulating the process at
hand using a sufficient number of computer-generated data. For each of the,
say r, data sets, Xi , we compute the value of q, denoted by qi , and then we
construct the corresponding histogram of these values. The unknown pdf can

1 The a percentile of q is the smallest number qa such that a ! P(q " qa).
2 More general versions of a two-tailed statistical test are also possible (e.g., [Papo 91]).

Figure 1: Abstractly shown are distributions of a hypothetical test statistic, q, under the null
hypothesis, H0, and an alternative hypothesis, H1, the critical interval of a one-sided
hypothesis test of significance fl, Dfl, and related quantities (Theodoridis, 2009, p. 865).

Kendall18, Cowan19, Cranmer20, Mayo21, Hastie22.

We start with a presumably well confirmed null hypothesis, H0, and a possible alternative
hypothesis we want to test, H1. We choose the significance level or size of the test, fl, usually
to be a small probability like 5% (corresponding to two standard deviations) or 1 in 3.5
million (corresponding to five standard deviations).

TODO: we construct a test statistic, q. Let q0
fl denote the value q for which Pr(q Æ

q0
fl|H0) = fl, and since the distribution of q has unit normalization, Pr(q Ø q0

1≠fl|H0) = fl,
as well. Therefore, there exists a critical interval, Dfl, in the distribution of q such that
Pr(q Ø q1≠fl|H0) = fl. Assuming the null hypothesis were true, the significance level, fl,
specifies the probability that the observed test statistic would be q1≠fl or larger. The test
is constructed in this way such that if the data result in an observed test statistic in the
critical interval, then we are compelled to reject the null hypothesis. The significance level,
fl, is also known as the rate of type-1 error, being the probability of mistakenly rejecting the
null hypothesis.

TODO: So far, this has only concerned the null hypothesis, H0, and how rare some data
would be if it were true. Next, one defines the power of the test, W (◊),

TODO: type-2 error.

Neyman-Pearson lemma

tNP(x) = f(x|H1)/f(x|H0) (1)

18Kendall (1946).
19Cowan (1998).
20Cranmer (2015).
21Mayo (1996).
22Hastie, Tibshirani, & Friedman (2009).

4

• Cluster validation via hypothesis testing 
𝞺 = α = p-value for H0 (5% for 95% CL)

• Neyman-Pearson theory of confidence intervals 
q ~

• Can give frequentist confidence that:  
if the kind exists (H1 is true), then it fits the data better,  
if H0 is true, then the observed data is rare at some confidence level.

?

ClusteringIssues:DistanceMetrics

Distancemetricsstronglyinfluenceclustershapes:

•Normalizeddot-product:
xty

∥x∥∥y∥
•Euclidean:∥x−µµµi∥2=(x−µµµi)t(x−µµµi)

•WeightedEuclidean:(x−µµµi)tW(x−µµµi)(e.g.,W=ΣΣΣ−1)

•Minimumdistance(chain):mind(x,xi),xiϵCi

•Representationspecific...
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Clustering Issues: Distance Metrics

Distance metrics strongly influence cluster shapes:

• Normalized dot-product:
xty

∥x∥∥y∥
• Euclidean: ∥x − µµµi∥2 = (x − µµµi)t(x − µµµi)

• Weighted Euclidean: (x − µµµi)tW (x − µµµi) (e.g., W = ΣΣΣ−1)

• Minimum distance (chain): min d(x, xi), xiϵCi

• Representation specific . . .
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FIGURE 16.1

Critical regions of (a) A two-tailed test, (b) A right-tailed test, and (c) A left-tailed test. q0
a is the

a percentile of q under H0.1

In practice, the final decision to reject or accept H0 is based partially on the pre-
ceding statements as well as on other factors, such as the cost of a wrong decision.
Thus, the terms “accept”and “reject”H0 must be interpreted accordingly.

The probability density function (pdf) of the statistic q, under H0, for most of
the statistics used in practice has a single maximum and the D̄" region is either a
half-line or the union of two half-lines. These assumptions have also been adopted
here. Figure 16.1 shows the three possible cases for D̄". In the first case, D̄" is the
union of two half-lines. Such a test is known as a two-tailed statistical test. The
other two tests are called one-tailed statistical tests, because D̄" consists of a single
half-line. Figure 16.1a is an example of a two-tailed statistical test2 and Figures 16.1b
and 16.1c are examples of a right- and a left-tailed test, respectively.

In many practical cases the exact form of the pdf of a statistic q, under a given
hypothesis, is not available and it is difficult to obtain. In the sequel,we discuss two
methods for estimating pdf’s via simulations.

■ Monte Carlo techniques [Shre 64, Sobo 84] rely on simulating the process at
hand using a sufficient number of computer-generated data. For each of the,
say r, data sets, Xi , we compute the value of q, denoted by qi , and then we
construct the corresponding histogram of these values. The unknown pdf can

1 The a percentile of q is the smallest number qa such that a ! P(q " qa).
2 More general versions of a two-tailed statistical test are also possible (e.g., [Papo 91]).

Figure 1: Abstractly shown are distributions of a hypothetical test statistic, q, under the null
hypothesis, H0, and an alternative hypothesis, H1, the critical interval of a one-sided
hypothesis test of significance fl, Dfl, and related quantities (Theodoridis, 2009, p. 865).

Kendall18, Cowan19, Cranmer20, Mayo21, Hastie22.

We start with a presumably well confirmed null hypothesis, H0, and a possible alternative
hypothesis we want to test, H1. We choose the significance level or size of the test, fl, usually
to be a small probability like 5% (corresponding to two standard deviations) or 1 in 3.5
million (corresponding to five standard deviations).

TODO: we construct a test statistic, q. Let q0
fl denote the value q for which Pr(q Æ

q0
fl|H0) = fl, and since the distribution of q has unit normalization, Pr(q Ø q0

1≠fl|H0) = fl,
as well. Therefore, there exists a critical interval, Dfl, in the distribution of q such that
Pr(q Ø q1≠fl|H0) = fl. Assuming the null hypothesis were true, the significance level, fl,
specifies the probability that the observed test statistic would be q1≠fl or larger. The test
is constructed in this way such that if the data result in an observed test statistic in the
critical interval, then we are compelled to reject the null hypothesis. The significance level,
fl, is also known as the rate of type-1 error, being the probability of mistakenly rejecting the
null hypothesis.

TODO: So far, this has only concerned the null hypothesis, H0, and how rare some data
would be if it were true. Next, one defines the power of the test, W (◊),

TODO: type-2 error.

Neyman-Pearson lemma

tNP(x) = f(x|H1)/f(x|H0) (1)

18Kendall (1946).
19Cowan (1998).
20Cranmer (2015).
21Mayo (1996).
22Hastie, Tibshirani, & Friedman (2009).
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Natural kinds

16

• A natural kind is a natural (objective) grouping, as 
opposed to an artificial (constructed) one.

• “The human experience that the reality outside 
the observer’s control seems to make certain 
distinctions between categories 
inevitable”  (Hennig, 2015). 

• They carve nature at its joints.

• E.g. atomic elements, 4 DNA bases, …

• Complex/evolving species are more problematic 
(the species problem).

Carbon (6C) Gold (79Au)
Coyote Coywolf

W.V.O. Quine
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Convergence

17

• “In the physical sciences, the single “best” 
theory, is usually much better than the others, 
so selecting the single best law is not much 
different from ALP. In the complex sciences—
such as sociology, psychology and geology—the 
tenth best theory may be not far behind the 
best, and ALP’s weighing of all of them can be 
considerably different from choosing the single 
best one.”

• E.g. 1/r2 Newtonian gravity

• Effectiveness / abduction

• The “right” approximation

Solomonoff

F~1/r2

[Solomonoff, R. J. (1996).]
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Summary

18

• Phrasing the scientific realism debate in machine learning 
terms can sharpen the disucssion.  

• Antirealist might say:

‣ Science finds empirically adequate patterns and regularities.

‣ No need to think they are objectively real.

‣ Machine learning will take this pattern finding out of human  
hands. “The End of Theory”  [Anderson, C. (2008). Wired.]

• Realist retort:

‣ Machine learning makes manifest that we can classify the world into kinds, 
arguably (nearly) independent of human convention.

‣ ML is not the end of theory, in fact it is becoming one of our most powerful 
tools for discovering natural laws.

Data Features Clustering Natural Kinds ?
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“The challenge, if one is not to abandon 
the view that science is characterized by 
rational methods of hypothesis appraisal, is 
either to develop more adequate models 
of inductive inference, or else to find some 
account of scientific rationality.” 
 
— Deborah Mayo (1996)  
Error and the Growth of Experimental 
Knowledge



Ryan Reece (UCSC)

Examples of CNNs

24

2 L. Pigou, S. Dieleman, P. Kindermans, B. Schrauwen

2 Related Work

In our work, we build on the results of Roel Verschaeren [18]. He proposes a CNN
model that recognizes a set of 50 di↵erent signs in the Flemish Sign Language
with an error of 2.5%, using the Microsoft Kinect. Unfortunately, this work is
limited in the sense that it considers only a single person in a fixed environment.

In [19] an American Language recognition system is presented with a vo-
cabulary of 30 words. They constructed appearance-based representations and a
hand tracking system to be classified with a hidden Markov model (HMM). An
error rate of 10.91% is achieved on the RWTH-BOSTON-50 database.

The approach in [4] uses the Microsoft Kinect to extract appearance-based
hand features and track the position in 2D and 3D. The classification results are
obtained by comparing a hidden Markov model (HMM) approach with sequential
pattern boosting (SP-boosting). This resulted in an accuracy of 99.9% on 20
di↵erent isolated gestures on their specifically constructed data set and 85.1%
on a more realistic one with 40 gestures.

The Microsoft Kinect is also used in [2] that proposes a recognition system
for 239 words of the Chinese Sign Language (CSL). Here, the 3D movement
trajectory of the hands are used besides a language model to construct sentences.
This trajectory is aligned and matched with a gallery of known trajectories. The
top-1 and top-5 recognition rates are 83.51% and 96.32% respectively.

(a) RGB (b) Depth map (c) User index (d) Skeleton

Fig. 1. Data set for the CLAP14 gesture spotting challenge [5].

3 Methodology

3.1 Data

We use the data set from the ChaLearn Looking at People 2014 [5] (CLAP14)
challenge in this work. More specifically, Track 3: Gesture Spotting. This dataset
consists of 20 di↵erent Italian gestures, performed by 27 users with variations in
surroundings, clothing, lighting and gesture movement. The videos are recorded
with a Microsoft Kinect. As a result, we have access to the depth map, user
index (location of the user in the depth map) and the joint positions (Figure 1).

Pigou et al. (2014). Sign Language Recognition 
using Convolutional Neural Networks.

4 L. Pigou, S. Dieleman, P. Kindermans, B. Schrauwen

channel, and together with the activation functions of the neurons, they form
feature maps. This is followed by a pooling scheme, where only the interest-
ing information of the feature maps are pooled together. These techniques are
performed in multiple layers as shown in Figure 3.

3.4 Proposed Architecture

For the pooling method, we use max-pooling: only the maximum value in a local
neighborhood of the feature map remains. To accommodate video data, the
max-pooling is performed in three dimensions. However, using 2D convolutions
resulted in a better validation accuracy than 3D convolutions.

The architecture of the model consists of two CNNs, one for extracting hand
features and one for extracting upper body features. Each CNN is three layers
deep. A classical ANN with one hidden layer provides classification after concate-
nating the outcomes of both CNNs. Also, local contrast normalization (LCN)
as in [10] is applied in the first two layers and all artificial neurons are rectified
linear units (ReLUs [14], [6]). An illustration of the architecture is depicted in
Figure 3.

Input

videos

Feature
map

2@64x64x32

512

20

Convolutions

16@5x5

Convolutions

32@5x5

Convolutions

48@4x4

Pooling
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Pooling
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Pooling
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Layer 1 Layer 2 Layer 3 ANN

Feature extraction

Classification

Fig. 3. The architecture of the convolutional neural network. This illustration only
shows one of the two identical CNNs.

3.5 Generalization and Training

During training, dropout [9] and data augmentation are used as main approaches
to reduce overfitting. The data augmentation is performed in real time on the
CPU during the training phase whiles the model trains on the GPU as in [12].
This consists of zooming up to 10%, rotations up to (-)3�, spatial translations
up to (-)5 pixels in the x and y direction, and temporal translations up to (-)4
frames.

We use Nesterov’s accelerated gradient descent (NAG) [16] with a fixed
momentum-coe�cient of 0.9 and mini-batches of size 20. The learning rate is ini-
tialized at 0.003 with a 5% decrease after each epoch. The weights of the CNNs

• In 1990s, Yann LeCun pioneered 
Convolutional Neural Nets (CNN) 
and used them for Optical Character 
Recognition.

• Inspired by animal cortex.

• Now it is standard in image 
recognition and captioning, NLP, 
computer vision, etc.
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Abstract

Attributes offer useful mid-level features to interpret vi-

sual data. While most attribute learning methods are super-

vised by costly human-generated labels, we introduce a sim-

ple yet powerful unsupervised approach to learn and predict

visual attributes directly from data. Given a large unlabeled

image collection as input, we train deep Convolutional Neu-

ral Networks (CNNs) to output a set of discriminative, bi-

nary attributes often with semantic meanings. Specifically,

we first train a CNN coupled with unsupervised discrimi-

native clustering, and then use the cluster membership as a

soft supervision to discover shared attributes from the clus-

ters while maximizing their separability. The learned at-

tributes are shown to be capable of encoding rich imagery

properties from both natural images and contour patches.

The visual representations learned in this way are also

transferrable to other tasks such as object detection. We

show other convincing results on the related tasks of image

retrieval and classification, and contour detection.

1. Introduction
Attributes [16] offer important mid-level cues for many

visual tasks like image retrieval. Shared attributes can also
generalize across categories to define the unseen object
from a new category [28]. Most supervised attribute learn-
ing methods [7, 16, 28, 48] require large amounts of human
labeling (e.g., “big”, “furry”), which is expensive to scale
up to rapidly growing data. Alternatives [3, 38] leverage
texts on the web that are narrow or biased in scope [35].

To discover attributes from numerous potentially unin-
teresting images is much like finding needles in a haystack.
It is more challenging to find those ideal attributes that are
shared across certain categories and meanwhile can distin-
guish them from others. The above supervised methods re-
duce such a large searching space by directly using human-
generated labels or semantic text. Besides costing substan-
tial human effort, the major drawback of these methods is
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Figure 1. 2D feature space of our unsupervisedly learned attributes
for natural images on CIFAR-10 [26] and binary contour patches
on BSDS500 [2]. The colored lines delineate the approximate sep-
aration borderlines of the binary attributes, which are discrimina-
tive and easily interpreted semantically in both cases. In the first
case, it is obvious that many attributes are shared across categories,
and they together can help distinguish the categories of interest.

that they cannot guarantee the manually defined attributes
are sufficiently predictable or discriminative in the feature
space. Recent works [33, 35, 37] address this drawback

1

[Huang, Loy, & Tang (2016)]
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514 14. Unsupervised Learning

FIGURE 14.9. Sir Ronald A. Fisher (1890 − 1962) was one of the founders
of modern day statistics, to whom we owe maximum-likelihood, sufficiency, and
many other fundamental concepts. The image on the left is a 1024×1024 grayscale
image at 8 bits per pixel. The center image is the result of 2× 2 block VQ, using
200 code vectors, with a compression rate of 1.9 bits/pixel. The right image uses
only four code vectors, with a compression rate of 0.50 bits/pixel

We see that the procedure is successful at grouping together samples of
the same cancer. In fact, the two breast cancers in the second cluster were
later found to be misdiagnosed and were melanomas that had metastasized.
However, K-means clustering has shortcomings in this application. For one,
it does not give a linear ordering of objects within a cluster: we have simply
listed them in alphabetic order above. Secondly, as the number of clusters
K is changed, the cluster memberships can change in arbitrary ways. That
is, with say four clusters, the clusters need not be nested within the three
clusters above. For these reasons, hierarchical clustering (described later),
is probably preferable for this application.

14.3.9 Vector Quantization

The K-means clustering algorithm represents a key tool in the apparently
unrelated area of image and signal compression, particularly in vector quan-
tization or VQ (Gersho and Gray, 1992). The left image in Figure 14.92 is a
digitized photograph of a famous statistician, Sir Ronald Fisher. It consists
of 1024× 1024 pixels, where each pixel is a grayscale value ranging from 0
to 255, and hence requires 8 bits of storage per pixel. The entire image oc-
cupies 1 megabyte of storage. The center image is a VQ-compressed version
of the left panel, and requires 0.239 of the storage (at some loss in quality).
The right image is compressed even more, and requires only 0.0625 of the
storage (at a considerable loss in quality).

The version of VQ implemented here first breaks the image into small
blocks, in this case 2×2 blocks of pixels. Each of the 512×512 blocks of four

2This example was prepared by Maya Gupta.

[Hastie, Tibshirani, & Friedman (2009). p. 514]
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Large Hadron Collider
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• 1011 protons / bunch
• 1000 bunches/ beam
• 20 MHz , 50 ns bunch spacing
• 1-40 interactions / crossing
• 0.5 × 109 interactions / sec

• 27 km circumference
• 1232 dipoles: 15 m , 8.3 T
• 100 tons liquid He, 1.9 K
• p-p collisions at √s = 7-8 TeV
• inst. luminosity = 1032-1034 cm-2s-1

Geneva, Switzerland
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ATLAS Detector

T. Rex

Humans  
(for scale)

ATLAS is a 7 story tall, 100 megapixel “camera”, taking 3-D pictures of proton-
proton collisions 40 million times per second, saving 10 million GB of data per 
year, using a world-wide computing grid with over 100,000 CPUs.  The 
collaboration involves more than 3000 scientists and engineers.

proton beam
p+

p+
Tracker

Muon Spectrometer

Calorimeter

collision point
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Datasets
Recently broke inst. lumi. 
records > 1034 cm-2s-1  The LHC has performed extremely well!!

2015: 3.2/fb

2016: 33/fb

Latest analyses combine collision data at √s=13TeV collected in the years 
2015 and 2016, giving a total integrated lumi ≈ 36 fb-1.

Typically 20-40 verticies 
per bunch crossing
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τ-jet

jet

• muons

• electrons & photons

• jets of hadrons

• τ- and b-tagged jets

• missing energy

What do we reconstruct?

How do we search?

(main objects)

SM  
W, Z, top,...

Higgs 
H→ɣɣ, ZZ, WW, ....

SUSY  
l+jets,ɣ+jets, ...

Exotics 
Z’, W’, ...

ATLAS Physics Groups

Currently ATLAS has published 579+ papers 
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3. The LHC and ATLAS 78

Figure 3.24: TODO [296].
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54 3    Offline Software  

The stages in the simulation data-flow pipeline are described in more detail in the following 
sections. In addition to the full simulation framework, ATLAS has implemented a fast simula-
tion framework that reduces substantially the processing requirements in order to allow larger 
samples of events to be processed rapidly, albeit with reduced precision. Both these frameworks 
are described below.

3.8.2  Generators

Event generators are indispensable as tools for the modelling of the complex physics processes 
that lead to the production of hundreds of particles per event at LHC energies. Generators are 
used to set detector requirements, to formulate analysis strategies, or to calculate acceptance 
corrections. They also illustrate uncertainties in the physics modelling.

Generators model the physics of hard processes, initial- and final-state radiation, multiple inter-
actions and beam remnants, hadronization and decays, and how these pieces come together. 

The individual generators are run from inside Athena and their output is converted into a com-
mon format by mapping into HepMC. A container of these is placed into the transient event 
store under StoreGate and can be made persistent. The event is presented for downstream use 
by simulation, for example by G4ATLAS simulation (using Geant4) or the Atlfast simulation. 
These downstream clients are shielded thereby from the inner details of the various event gen-
erators.

Each available generator has separate documentation describing its use. Simple Filtering Algo-
rithms are provided, as well as an example of how to access the events and histogram the data.

Figure 3-5  The simulation data flow. Rectangles represent processing stages and rounded rectangles repre-
sent objects within the event data model. Pile-up and ROD emulation are optional processing stages.

Generator HepMC Particle Filter MCTruth
(Gen) Simulation

MCTruth
(Sim)

Pile-Up

HitsDigitizationROD Input 
Digits

MCTruth
(Pile-up)Merged Hits

ByteStream
ConversionSvc

ROD Emulation 
Algorithm

ROD Emulation 
(passthrough)

Raw Data 
Objects

ByteStream ATLAS

Reco

Figure 3.25: TODO [275].

ATLAS [301]. Samples of s-channel and t-channel single top events were generated with AcerMC [302],1455

with the parton shower and hadronization done with PYTHIA [303]. Signal samples representing1456

hypothetical Z 0 decays consistent with the SSM were generated with PYTHIA. Activity from multiple1457

pile-up interactions per bunch crossing was modeled by overlaying simulated minimum bias events,1458

generated with PYTHIA and specially tuned for minimum-bias interactions at the LHC [304], over1459

the original hard-scattering event. The e↵ects of QED radiation were generated with PHOTOS [305],1460

and hadronic tau decays were generated with TAUOLA [306].1461
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Trigger
& DAQ
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ntuple plots/ 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100101011
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Fig. 9. Reconstructed dielectron mass distribution for J/ψ → ee decays, as measured after applying the baseline Z → ee
calibration. The data (full circles with statistical error bars) are compared to the sum of the MC signal (light filled histogram)
and the background contribution (darker filled histogram) modelled by a Chebyshev polynomial. The mean (µ) and the Gaussian
width (σ) of the fitted Crystal Ball function are given both for data and MC.

Table 4. Measured effective constant term cdata (see Eq. 6) from the observed width of the Z → ee peak for different calorimeter
η regions.

Sub-system η-range Effective constant term, cdata

EMB |η| < 1.37 1.2% ± 0.1% (stat) + 0.5%
− 0.6% (syst)

EMEC-OW 1.52 < |η| < 2.47 1.8% ± 0.4% (stat) ± 0.4% (syst)
EMEC-IW 2.5 < |η| < 3.2 3.3% ± 0.2% (stat) ± 1.1% (syst)
FCal 3.2 < |η| < 4.9 2.5% ± 0.4% (stat) + 1.0%

− 1.5% (syst)

The results obtained for the effective constant term
are shown in Table 4. Several sources of systematic uncer-
tainties are investigated. The dominant uncertainty is due
to the uncertainty on the sampling term, as the constant
term was extracted assuming that the sampling term is
correctly reproduced by the simulation. To assign a sys-
tematic uncertainty due to this assumption, the simulation
was modified by increasing the sampling term by 10%. The
difference in the measured constant term is found to be
about 0.4% for the EM calorimeter and 1% for the forward
calorimeter. The uncertainty due to the fit procedure was
estimated by varying the fit range. The uncertainty due
to pile-up was investigated by comparing simulated MC
samples with and without pile-up and was found to be
negligible.

6 Efficiency measurements

In this section, the measurements of electron selection effi-
ciencies are presented using the tag-and-probe method [31,
32]. Z → ee events provide a clean environment to study
all components of the electron selection efficiency dis-
cussed in this paper. In certain cases, such as identification
or trigger efficiency measurements, the statistical power
of the results is improved using W → eν decays, as well.
To extend the reach towards lower transverse energies,

J/ψ → ee decays are also used to measure the electron
identification efficiency. However the available statistics
of J/ψ → ee events after the trigger requirements in the
2010 data sample are limited and do not allow a precise
separation of the isolated signal component from b-hadron
decays and from background processes.

6.1 Methodology

A measured electron spectrum needs to be corrected for
efficiencies related to the electron selection in order to de-
rive cross-sections of observed physics processes or limits
on new physics. This correction factor is defined as the
product of different efficiency terms. For the case of a sin-
gle electron in the final state one can write:

C = ϵevent · αreco · ϵID · ϵtrig · ϵisol. (7)

Here ϵevent denotes the efficiency of the event preselec-
tion cuts, such as primary vertex requirements and event
cleaning. αreco accounts for the basic reconstruction ef-
ficiency to find an electromagnetic cluster and to match
it loosely to a reconstructed charged particle track in the
fiducial region of the detector and also for any kinematic
and geometrical cuts on the reconstructed object itself.
ϵID denotes the efficiency of the identification cuts rela-
tive to reconstructed electron objects. ϵtrig stands for the

Building a model

33

N(expected) = N(correct-ID) + N(fake)} }
• Top-down , “data-driven”

• various magic with data 
depending on the analysis and 
your creativity

• side-band fit

• fake-factor method

• Bottom-up

• well-identified objects 
have scale factors from 
control regions

• estimated with detailed 
Monte Carlo simulation

[arxiv:1110.3174]

J/ψ

background

Bottom-up  
Monte Carlo

Data-driven  
side-band fit
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several particles is collected in a single pixel. This problem occurs more and more often as the
spatial separation between the particles on the sensor plane approaches the pixel size. This cluster
merging is depicted in figure 3, which illustrates an event in which the charge induced by three
particles is reconstructed as a single cluster.

Figure 4 shows the average separation in the transverse (hd min
x i) and longitudinal (hd min

y i)
direction of the two closest stable charged particles in jets, at the radius of the innermost pixel
layer in the barrel. Only track pairs separated by less than a pixel in the longitudinal (transverse)
direction are shown here for the transverse (longitudinal) direction. A sample of simulated dijet
events based on the PYTHIA [10] Monte Carlo generator with the leading jet pT greater than
800 GeV was used. Jets were reconstructed from stable generator-level particles using an anti–kt

jet algorithm [11] with a cone size of 0.4. The figure illustrates that shared measurements appear
already in jets with relatively moderate momentum as cluster merging starts before the pixel size
is reached. In the worst case, when cluster merging appears in pixel layers beyond the innermost
and the number of shared measurements on a track exceeds the given threshold, the track candidate
is completely disregarded to avoid the creation of duplicate tracks. This leads to an inefficiency
in finding both tracks. The limit where two close–by tracks can still be reconstructed separately
is often referred to as double–track resolution. With the CCA clustering, no attempt is made to
identify or split these merged clusters.

Figure 3. Illustration of charge deposited by multiple particles in the dense core of a jet in a layer of the
pixel detector. The pixel size is not drawn to scale. The arrows indicate the passage of charged particles
through the pixel sensor. The pixels are shaded according to which particle deposited charge in them. The
dashed lines indicate the path traversed by the particles in the silicon and the solid line shows the single
cluster obtained by the eight-cell CCA.
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Figure 7. The cluster residual in the local x direction for clusters with a width of three (left) or four pix-
els (right) in the x–direction reconstructed with the CCA clustering algorithm (dashed line) and the NN
clustering algorithm (solid line).

on the local charged–particle density, Lorentz drift and the incident angles of the traversing parti-
cles; effects from charge collection and channel cross-talk are negligible. Clusters in the barrel and
endcap are thus treated similarly, but with the detector region given as input to the NN, so cluster
classification is performed based on cluster sizes.

Figure 8 compares the root mean square (RMS) of the measurement residuals for the CCA
clustering and the NN clustering algorithm in data and simulation in the transverse and longi-
tudinal direction in the different cluster categories. The majority of three– and four–pixel wide
clusters in the transverse direction are due to close–by particles and d–rays. In the longitudinal
direction, clusters of this size are geometrically possible due to the shallower incidence angle. The
improvement shown in figure 8(left) can thus be mostly attributed to actual cluster splitting, which
includes splitting components from d -rays, while in figure 8(right) a sizeable contribution of the
improvement is caused by the non–linear charge interpolation of the NN clustering algorithm. Dis-
crepancies between data and Monte Carlo simulation can arise from imperfections of the detector
such as module misalignment or deformations that are not present in the simulated model of the
detector geometry, as well as from limitations in the detector simulation and digitisation model
that include several complex components as described in section 3.2. Discrepancies are seen in
figure 8 for the longitudinal direction. This is most likely due to limitations in the modelling of the
longitudinal charge sharing. Nonetheless, the relative improvement obtained by the NN clustering
algorithm compared to the CCA clustering algorithm is largely consistent between data and Monte
Carlo simulations.

The improvement coming from the non–linear charge interpolation and d–ray handling in the
NN clustering can be checked on isolated tracks as there are no other close–by particles from the
beam collision. Pairs of oppositely charged combined muons with pT > 25 GeV, which produce a
Z boson candidate with a mass mµµ > 50 GeV were selected. A combined muon is a muon recon-
structed using information from both the inner detector and the muon spectrometer. The impact
parameter resolution with respect to the primary vertex in data is shown in figure 9. Only the inner
detector component of the combined track is taken to extract the impact parameter distribution, and

– 14 –

[1406.7690]

NNs and BDTs in ATLAS
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• Using NNs and other MVAs 
has been common in HEP 
for years, for pattern 
recognition, particle ID, 
event selection...

• In the past, always used 
shallow NNs.

• ATLAS uses NNs in many 
places, e.g. pixel clustering.

• Jet tagging for taus and b-
quarks has used NNs in 
many iterations (also c, q/g).

8 The ATLAS Collaboration
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Fig. 5 Inverse background efficiency versus signal efficiency
for the offline tau identification, for (a) a low-pT and (b) a
high-pT τhad-vis range. Simulation samples for signal include
a mixture of Z, W and Z′ production processes, while data
from multi-jet events is used for background. The red markers
correspond to the three working points mentioned in the text.
The signal efficiency shown corresponds to the total efficiency
of τhad-vis decays to be reconstructed as 1-track or 3-track
and pass tau identification selection.

all calibrated at the EM scale. For each τhad-vis candi-
date, the EM isolation is calculated as the transverse
energy deposited in the annulus between 0.2× 0.2 and
0.4× 0.4 in the EM calorimeter.

To suppress background events and thus reduce trig-
ger rates, an EM isolation energy of less than 4 GeV is
required for the lowest ET threshold at L1. Hardware
limitations prevent the use of an ET-dependent selec-
tion. This requirement reduces the efficiency of τhad-vis
events by less than 2% over most of the kinematic range.
Larger efficiency losses occur for τhad-vis events at high
ET values; those are recovered through the use of trig-
gers with higher ET thresholds but without any isola-
tion requirements.

The energy resolution at L1 is significantly lower
than at the offline level. This is due to the fact that

all cells in a trigger tower are combined without the
use of sophisticated clustering algorithms and without
τhad-vis-specific energy calibrations. Also, the coarse en-
ergy and geometrical position granularity limits the pre-
cision of the measurement. These effects lead to a sig-
nificant signal efficiency loss for low-ET τhad-vis candi-
dates.

Level 2 At L2, τhad-vis candidate RoIs from L1 are
used as seeds to reconstruct both the calorimeter- and
tracking-based observables associated with each τhad-vis
candidate. The events are then selected based on an
identification algorithm that uses these observables.
The calorimeter observables associated with the τhad-vis
candidates are calculated using calorimeter cells, where
the electronic and pile-up noise are subtracted in the
energy calibration. The centre of the τhad-vis energy de-
posit is taken as the energy-weighted sum of the cells
collected in the region ∆R < 0.4 around the L1 seed.
The transverse energy of the τhad-vis is calculated using
only the cells in the region ∆R < 0.2 around its centre.

To calculate the tracking-based observables, a fast
tracking algorithm [48] is applied, using only hits from
the pixel and SCT tracking layers. Only tracks satisfy-
ing pT > 1.5 GeV and located in the region ∆R < 0.3
around the L2 calorimeter τhad-vis direction are used.
The tracking efficiency with respect to offline reaches a
plateau of 99% at 2 GeV (with an efficiency of about
98% at 1.5 GeV). The fast tracking algorithm required
an average of 37 ms to run at the highest pile-up condi-
tions at peak luminosity in 2012 (approximately forty
pile-up interactions).

As there is no vertex information available at this
stage, an alternative approach is used to reject tracks
coming from pile-up interactions. A requirement is
placed on the ∆z0 between a candidate track and the
highest-pT track inside the RoI. The distribution of
∆z0 is shown in Fig. 6 for simulated Z → ττ events
with an average of eight interactions per bunch cross-
ing. High values of ∆z0 typically correspond to pile-up
tracks while the central peak corresponds to the main
interaction tracks.

The ∆z0 distribution is fit to the sum of a Breit–
Wigner function to describe the central peak and a
Gaussian function to describe the broad distribution
from tracks in pile-up events. The half-width of the
Breit–Wigner σ=0.32 mm is taken as the point where
68% of the signal events are included in the central
peak. A dependence of the trigger variables on pile-
up conditions is minimized by considering only tracks
within −2 mm < ∆z0 < 2 mm and ∆R < 0.1 with
respect to the highest-pT track.

[1412.7086]

ATLAS pixel clustering with NNs

ATLAS tau identification with BDTs
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K. Nikolopoulos Nov 14th, 2012H→γγ and H→ZZ at ATLAS

Η→ZZ(*)→4l: Results of Event Selection
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Signal ZZ(*) Other
Backgrounds

Observed

4µ 2.09±0.30 1.12±0.05 0.13±0.04 6

2µ2e/2e2µ 2.29±0.33 0.80±0.05 1.27±0.19 5

4e 0.90±0.14 0.44±0.04 1.09±0.20 2

for m4l  region with 125±5GeV

Expected S/B for mH=125 GeV
4µ ~1.6

2e2µ/2µ2e ~1.0
4e ~0.6

K. Nikolopoulos Nov 14th, 2012H→γγ and H→ZZ at ATLAS

Η→γγ: mγγ spectra

11

all categories

Higgs discovery

35

H→ɣɣ H→ZZ→4l

[arxiv: 1207.7214]
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Figure 11: Confidence intervals in the (µ,mH) plane for the
H→ZZ(∗)→ 4ℓ, H→ γγ, and H→WW(∗)→ ℓνℓν channels, including
all systematic uncertainties. The markers indicate the maximum like-
lihood estimates (µ̂, m̂H ) in the corresponding channels (the maximum
likelihood estimates for H→ZZ(∗)→ 4ℓ and H→WW(∗)→ ℓνℓν coin-
cide).

by the common parameter µggF+tt̄H . Similarly, µVBF and
µVH have been grouped together as they scale with the
WWH/ZZH coupling in the SM, and are denoted by the
common parameter µVBF+VH . Since the distribution of
signal events among the 10 categories of the H→ γγ

search is sensitive to these factors, constraints in the
plane of µggF+tt̄H ×B/BSM and µVBF+VH ×B/BSM, where
B is the branching ratio for H→ γγ, can be obtained
(Fig. 12). Theoretical uncertainties are included so that
the consistency with the SM expectation can be quanti-
fied. The data are compatible with the SM expectation
at the 1.5σ level.

10. Conclusion

Searches for the Standard Model Higgs boson have
been performed in the H→ ZZ(∗)→ 4ℓ, H→ γγ and
H→WW (∗)→ eνµν channels with the ATLAS experi-
ment at the LHC using 5.8–5.9 fb−1 of pp collision data
recorded during April to June 2012 at a centre-of-mass
energy of 8 TeV. These results are combined with ear-
lier results [17], which are based on an integrated lu-
minosity of 4.6–4.8 fb−1 recorded in 2011 at a centre-
of-mass energy of 7 TeV, except for the H→ ZZ(∗)→ 4ℓ
and H→ γγ channels, which have been updated with the
improved analyses presented here.
The Standard Model Higgs boson is excluded at

95% CL in the mass range 111–559GeV, except for
the narrow region 122–131GeV. In this region, an ex-
cess of events with significance 5.9σ, corresponding
to p0 = 1.7 × 10−9, is observed. The excess is driven

SM B/B× 
ttHggF+

µ
-1 0 1 2 3 4 5

SM
 B

/B
× 

VH
VB

F+
µ

-2

0

2

4

6

8

10

γ γ →H 

ATLAS 2011 - 2012
-1Ldt = 4.8 fb∫ = 7 TeV:  s
-1Ldt = 5.9 fb∫ = 8 TeV:  s

SM
Best fit
68% CL
95% CL

Figure 12: Likelihood contours for the H→ γγ channel in the
(µggF+tt̄H , µVBF+VH ) plane including the branching ratio factor
B/BSM. The quantity µggF+tt̄H (µVBF+VH) is a common scale factor
for the ggF and tt̄H (VBF and VH) production cross sections. The
best fit to the data (+) and 68% (full) and 95% (dashed) CL contours
are also indicated, as well as the SM expectation (×).

by the two channels with the highest mass resolution,
H→ ZZ(∗)→ 4ℓ and H→ γγ, and the equally sensitive
but low-resolution H→WW (∗)→ ℓνℓν channel. Taking
into account the entire mass range of the search, 110–
600GeV, the global significance of the excess is 5.1σ,
which corresponds to p0 = 1.7 × 10−7.
These results provide conclusive evidence

for the discovery of a new particle with mass
126.0 ± 0.4 (stat) ± 0.4 (sys) GeV. The signal
strength parameter µ has the value 1.4 ± 0.3 at the
fitted mass, which is consistent with the SM Higgs
boson hypothesis µ = 1. The decays to pairs of vector
bosons whose net electric charge is zero identify the
new particle as a neutral boson. The observation in
the diphoton channel disfavours the spin-1 hypothe-
sis [140, 141]. Although these results are compatible
with the hypothesis that the new particle is the Standard
Model Higgs boson, more data are needed to assess its
nature in detail.
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• Local p0 = 1.7⨉10-9, corresponding to 5.9

Inconsistent with background only Consistent with SM Higgs

SM µ=1

[arxiv: 1207.7214]
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Systematics
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Knowledge = JTB-G
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Confidence Intervals

39

• A frequentist confidence interval is constructed such that, 
given the model, if the experiment were repeated, each time creating 
an interval, 95% (or other CL) of the intervals would contain the 
true population parameter (i.e. the interval has ≈95% coverage).

‣ They can be one-sided exclusions, e.g. m(Z’) > 2.0 TeV at 95% CL

‣ Two-sided measurements,  e.g. mH = 125.1 ± 0.2 GeV at 68% CL

‣ Contours in 2 or  more parameters 
 

• This is not the same as saying “There is a 95% probability that the 
true parameter is in my interval”.  Any probability assigned to a 
parameter strictly involves a Bayesian prior probability.

• Bayes’ theorem: P(Theory | Data) ∝ P(Data | Theory) P(Theory)
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We’ll discuss how one goes from the statistic on the left to the plot on the
right.

Ryan D. Reece (Penn) Likelihood Functions for SUSY ryan.reece@cern.ch 4 / 24“likelihood” “prior”


