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realism anti-realism

Scientific Realism
Science makes real progress 
in describing real features of 
the world.

philosophy of science

Structural Realism
Science has identified real patterns, 
relationships, and structures (at least 
within a regime) in nature.

Constructive Empiricism

ESR

OSR

Instrumentalism

Science aims to give us theories which are 
empirically adequate, but does not justify 
metaphysical claims about reality.

Relativism
Social constructivism.  
Epistemological 
anarchism.

Positivism

Theoretical concepts may have use in 
predicting observations, but we have 
no ontological commitments to them.
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Particle Physics

1. What is matter? 
2. How does it interact?

Fundamental questions
of particle physics:

Four fundamental forces at low energies:

1. Gravity - very weak, no complete quantum theory

2. Electromagnetism - binds atoms, chemistry

3. Strong force - nuclear range, binds nuclei 

4. Weak force - nuclear range, radioactivity, solar fusion
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Center for 
Cosmology and 
Particle Physics

Statistical Issues in Searches, SLAC, June 2012

The Success of the Standard Model & QFT

7

Non-trivial  aspects of the theory have been tested to < 1 ppm

A unique realm for reasonable statistical exploration of a scientific theory

6

• Every type of matter/energy has a corresponding field.

• In QFT, fields are (effectively) what is fundamental, and particles are 
quantized and often localized excitations in the fields.

• To satisfy relativity, they are the representation of the Poincare group: 
scalars, vectors, spinors, tensors.

• Non-trivial aspects of QFT have  
been tested to better than a part  
per million, e.g. the anomalous 
magnetic moments of 
electrons and muons.

• Very impressively,  
empirically adequate:  
arguably best tested science.

Quantum Field Theory (QFT)

analogy from Kyle Cranmer (NYU)
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The Standard Model

7

• Gauge symmetries determine the 
character of the forces between fermion 
fields through exchanging gauge bosons.

• Bosons and chiral fermions develop mass 
terms that still preserve the gauge 
symmetries of the Lagrangian through the 
Higgs mechanism (proposed in 1964).

• The SM gauge group is 

}
Strong 
force

Electromagnetic  
+ weak forces

2. The theoretical situation 23

Figure 2.2: The Standard Model. TODO.

The gauge symmetry determines the gauge boson fields of the theory. Combining this with a set of702

given Dirac fields describing the fermions determines the allowed interaction terms of the Lagrangian,703

by using gauge-covariant derivatives. In this way, the structure of the gauge symmetry of a theory704

specifies the structure of its interactions.705

2.3 The Standard Model706

2.3.1 Quarks, leptons, and gauge bosons707

In the SM, the fermions are described by spinor representations of the Poincaré group. The boson708

force carriers are described by gauge fields that are a result of requiring invariance of the action under709

a specific gauge group, which specifies a particular symmetry among the internal degrees of freedom710

of the spinor fields:711

SU(3)C ⇥ SU(2)L ⇥ U(1)Y .

Gauge invariance requires the introduction of gauge boson fields G↵

µ

, W a

µ

, and B
µ

, which serve as the712

connections in the covariant derivatives needed in the terms for the fermion kinetic energies18.713

18 See the discussion of gauge invariance and covariant derivatives in Section 2.2.6.

Higgs mechanism,  
EW symmetry breaking

𝜙

⇒

⇒Electroweak force  
SU(3)C × SU(2)L × U(1)Y

Higgs potential: V(𝜙)

vacuum 
expectation

value

Glashow, Salam, Weinberg (Nobel Prize 1979)
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2. The theoretical situation 45

Figure 6.8: Two-loop renormaliza-
tion group evolution of the inverse
gauge couplings ↵�1

a

(Q) in the Stan-
dard Model (dashed lines) and the
MSSM (solid lines). In the MSSM
case, the sparticle masses are treated
as a common threshold varied be-
tween 500 GeV and 1.5 TeV, and
↵3(mZ

) is varied between 0.117 and
0.121.
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This unification is of course not perfect; ↵3 tends to be slightly smaller than the common value of
↵1(MU

) = ↵2(MU

) at the point where they meet, which is often taken to be the definition of M
U

.
However, this small di↵erence can easily be ascribed to threshold corrections due to whatever new
particles exist near M

U

. Note that M
U

decreases slightly as the superpartner masses are raised. While
the apparent approximate unification of gauge couplings at M

U

might be just an accident, it may also
be taken as a strong hint in favor of a grand unified theory (GUT) or superstring models, both of which
can naturally accommodate gauge coupling unification below MP. Furthermore, if this hint is taken
seriously, then we can reasonably expect to be able to apply a similar RG analysis to the other MSSM
couplings and soft masses as well. The next section discusses the form of the necessary RG equations.

6.5 Renormalization Group equations for the MSSM

In order to translate a set of predictions at an input scale into physically meaningful quantities that
describe physics near the electroweak scale, it is necessary to evolve the gauge couplings, superpotential
parameters, and soft terms using their renormalization group (RG) equations. This ensures that the
loop expansions for calculations of observables will not su↵er from very large logarithms.

As a technical aside, some care is required in choosing regularization and renormalization procedures
in supersymmetry. The most popular regularization method for computations of radiative corrections
within the Standard Model is dimensional regularization (DREG), in which the number of spacetime
dimensions is continued to d = 4 � 2✏. Unfortunately, DREG introduces a spurious violation of su-
persymmetry, because it has a mismatch between the numbers of gauge boson degrees of freedom and
the gaugino degrees of freedom o↵-shell. This mismatch is only 2✏, but can be multiplied by factors
up to 1/✏n in an n-loop calculation. In DREG, supersymmetric relations between dimensionless cou-
pling constants (“supersymmetric Ward identities”) are therefore not explicitly respected by radiative
corrections involving the finite parts of one-loop graphs and by the divergent parts of two-loop graphs.
Instead, one may use the slightly di↵erent scheme known as regularization by dimensional reduction,
or DRED, which does respect supersymmetry [109]. In the DRED method, all momentum integrals
are still performed in d = 4 � 2✏ dimensions, but the vector index µ on the gauge boson fields Aa

µ

now runs over all 4 dimensions to maintain the match with the gaugino degrees of freedom. Running
couplings are then renormalized using DRED with modified minimal subtraction (DR) rather than

61

Figure 2.11: TODO [195].

2.4.2 Running of the couplings1081

TODO:1082

• As measured by the LEP experiments in 1991.1083

• Gauge couping unification is ruled out for the SM, but allowed by SUSY [192, 193, 194].1084

• (see Figure 2.11).1085

2.4.3 The hierarchy problem(s)1086

TODO:1087

• mGUT ⇡ 1 ⇥ 1016 GeV1088

• Why is the electroweak scale a factor of 1014 smaller than the GUT scale?1089

• mP ⇡ 1 ⇥ 1019 GeV1090

• Why is the electroweak scale a factor of 1017 smaller than the Planck mass? Why is gravity so1091

weak compared to the other forces?1092

• Reina notes [196]1093

• Langacker p. 455–6 [8]1094

Unanswered problems in particle physics
• Ad hoc features

• Why SU(3)xSU(2)xU(1) ?

• Neutrino mixing and masses (Dirac or Majorana)

• Matter-antimatter asymmetry

• Strong CP-problem

• Dark matter and dark energy

• 5% SM, 27% dark matter, 68% dark energy

• Hierarchy problem(s)

• mHiggs vs mPlanck, 

• quark masses range: 10
5
, leptons: 10

9

• Fine-tuning: 

• EW-scale, flatness problem, vacuum stability, etc.

• Unification?  Supersymmetry?

• Why did the early universe  
have such low entropy?

8

draft: v0.3 R. Reece

Table 3: Gauge-group representations of the SM fermions. The rows are components of weak
iso-spin, and the columns are components of color. The sets of three numbers on right
denote if the fields have a singlet or triplet representation of SU(3)C, doublet or singlet
representation of SU(2)L, and their weak hypercharge quantum number respectively.

Left -handed quarks:

✓
url ugl ubl
drl dgl dbl

◆
,

✓
crl cgl cbl
srl sgl sbl

◆
,

✓
trl tgl tbl
brl bgl bbl

◆
: ( 3,2, 16 )

Right -handed quarks:
�
urr ugr ubr

�
,

�
crr cgr cbr

�
,

�
trr tgr tbr

�
: ( 3,1, 23 )

�
drr dgr dbr

�
,

�
srr sgr sbr

�
,

�
brr bgr bbr

�
: ( 3,1, �1

3 )

Left -handed leptons:

✓
⌫el

el

◆
,

✓
⌫µl

µl

◆
,

✓
⌫⌧l

⌧l

◆
: ( 1,2, �1

2 )

Right -handed leptons: (er), (µr), (⌧r) : ( 1,1, �1 )

Table 4: Approximate values of the electroweak parameters. Only three of the dimensionless
and one of the ⇠ GeV parameters are fundamental, and the remaining can be de-
rived (Beringer, J. et al. (Particle Data Group) 2012).

g1 ⇡ 0.36 mW ⇡ 80.4 GeV
g2 ⇡ 0.65 mZ ⇡ 91.2 GeV
e ⇡ 0.31 v ⇡ 246 GeV
sin2 ✓W ⇡ 0.23

p
2 GF ⇡ (246 GeV)�2

Table 5: The SM parameters of the Higgs vacuum potential, assuming the Higgs-like particle ob-
served at the LHC, as discussed in Section 4.2, is the SM Higgs boson. Two of the three
parameters: µ, �, and mH are fundamental and one can be derived.

mH ⇡ 126 GeV �µ2 ⇡ (126 GeV)2/2
� ⇡ 0.13

e µ τ

u

d

c
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T
e
V

G
e
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M
e
V

k
e
V

e
V

m
e
V

neutrinos

Figure 5: Mass range of the SM fermions (Murayama, H. 2011). For approximate values of the
masses, see Table 6.

49

LEP (1991)

Supersymmetry

SM

~ 104 GeV  
current colliders

unification scale 
~1016 GeV



Ryan Reece (UCSC) 9

⎬

⎬
electroweak

planetary
motion

terrestrial
gravity

magnetism

electricity

weak force

strong force

⎬

universal gravitation

electromagnetism

⎬ ⎬
⎬

Grand
Unification

unified
quantum
gravity

Newton, Einstein

Maxwell

GWS Standard Model

QCD SU(3)

general relativity

QED U(1) strings?

SUSY?

102 �1016? ?

SU(5), SO(10), ... ?

SU(2) × U(1)

? �1019

Z’ ?

[GeV]
Energy

Unification?

Higgs mechanism

SU(3)C × SU(2)L × U(1)Y
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From: Flip Tanado (2009). Quantum Diaries blog: 
“My research [Part 2] effective theories.”

Effective theories emerge   
at different scales and 
nest into different regimes 
which have some 
autonomy of description.

Effective Theories

http://www.quantumdiaries.org/2009/07/02/my-research-part-2-effective-theories/
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Donald Rumsfeld’s 
• known knowns
• known unknowns
• unknown unknowns 

(violations of QFT itself)  
Slide from Sean Carroll:  
“Quantum Field Theory and the Limits of Knowledge”

Effective Field 
Theory applies

dynamics above the cut-off Λ

Wilson
Effective Field Theories 
have a regime of 
applicability: below a  
high-energy cut-off, Λ.

energy

co
up

lin
g

http://www.preposterousuniverse.com/blog/2015/04/21/quantum-field-theory-and-the-limits-of-knowledge/
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Slide from Sean Carroll:  
“Quantum Field Theory and the Limits of Knowledge”

Accepting the empirical adequacy or structural realism of QFT in a 
regime does not commit one to any “fundamental” ontology.

http://www.preposterousuniverse.com/blog/2015/04/21/quantum-field-theory-and-the-limits-of-knowledge/
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Slide from Sean Carroll:  
“Quantum Field Theory and the Limits of Knowledge”

http://www.preposterousuniverse.com/blog/2015/04/21/quantum-field-theory-and-the-limits-of-knowledge/
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FIG. 3. Upper limits on �ZH ⇥ BR(H ! inv.) at 95%
CL for a Higgs boson with 110 < mH < 400 GeV, for the
combined 7 and 8 TeV data. The full and dashed lines show
the observed and expected limits, respectively.

didate is considered and is either a scalar, a vector or a
Majorana fermion. The Higgs–nucleon coupling is taken
as 0.33+0.30

�0.07 [65], the uncertainty of which is expressed
by the bands in the figure. Spin-independent results
from direct-search experiments are also shown [66–73].
These results do not depend on the assumptions of the
Higgs-portal scenario. Within the constraints of such
a scenario however, the results presented in this Letter
provide the strongest available limits for low-mass DM
candidates. There is no sensitivity to these models once
the mass of the DM candidate exceeds mH/2. A search
by the ATLAS experiment for DM in more generic mod-
els, also using the dilepton + large Emiss

T final state, is
presented in Ref. [74].
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Example limits from ATLAS
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)expσ1 ±Expected limit (
=8 TeVs, -1Excluded at L=20.3 fb

All limits at 95% CL

Figure 3: Exclusion limits in the neutralino–gluino mass plane at 95% CL. The observed limits are exhibited for
the nominal SUSY model cross section, as well as for a SUSY cross section increased and lowered by one stand-
ard deviation of the cross-section systematic uncertainty. Also shown is the expected limit, as well as the ±1
standard-deviation range of the expected limit, which is asymmetric because of the low count expected. Because
the background expectation is close to zero and the observed number of events is zero, the expected and observed
limits nearly overlap. The previous limit from ATLAS using 8 TeV data [3] is shown in grey.

requirements associated with the SR, as well as the NLO (+NLL) GGM cross section [20–24], which
varies steeply with gluino mass, 95% CL lower limits may be set on the mass of the gluino as a function of
the mass of the lighter bino-like neutralino, in the context of the GGM scenario described in Section 1.

The resulting observed limit on the gluino mass is exhibited, as a function of neutralino mass, in Figure 3.
For the purpose of establishing these model-dependent limits, the W(! `⌫) + �� background estimate
and the limit on the possible number of events from new physics are extracted from a simultaneous fit to
the SR and W(! `⌫) + �� control region, although for a gluino mass in the range of the observed limit
the signal contamination in the W(! `⌫) + �� control sample is less than 0.03 events for any value of the
neutralino mass. Also shown for this figure is the expected limit, including its statistical and background
uncertainty range, as well as observed limits for a SUSY model cross section ±1 standard deviation of
theoretical uncertainty from its central value. Because the background expectation is close to zero and no
events are observed in data, the expected and observed limits nearly overlap. The observed lower limit on
the gluino mass is observed to be roughly independent of neutralino mass, reaching a minimum value of
approximately 1650 GeV at a neutralino mass of 250 GeV.

9 Conclusion

A search has been made for a diphoton + Emiss
T final state using the ATLAS detector at the Large Hadron

Collider in 3.2 fb�1 of proton–proton collision data taken at a centre-of-mass energy of 13 TeV in 2015.
At least two photon candidates with pT > 75 GeV are required, as well as minimum values of 175 GeV

12

[1606.09150]

Figure 1: Typical production and decay-chain processes for the gluino-pair production GGM model for which the
NLSP is a bino-like neutralino.

case, the final decay in each of the two cascades in a GGM event would be predominantly �̃0
1 ! � + G̃,

leading to final states with �� + Emiss
T .

In addition to the bino-like �̃0
1 NLSP, a degenerate octet of gluinos (the SUSY partner of the SM gluon) is

taken to be potentially accessible with 13 TeV pp collisions. Both the gluino and �̃0
1 masses are considered

to be free parameters, with the �̃0
1 mass constrained to be less than that of the gluino. All other SUSY

masses are set to values that preclude their production in 13 TeV pp collisions. This results in a SUSY
production process that proceeds through the creation of pairs of gluino states, each of which subsequently
decays via a virtual squark (the 12 squark flavour/chirality eigenstates are taken to be fully degenerate)
to a quark–antiquark pair plus the NLSP neutralino. Other SM objects (jets, leptons, photons) may be
produced in these cascades. The �̃0

1 branching fraction to � + G̃ is 100% for m�̃0
1
! 0 and approaches

cos2 ✓W for m�̃0
1
� mZ , with the remainder of the �̃0

1 sample decaying to Z + G̃. For all �̃0
1 masses, then, the

branching fraction is dominated by the photonic decay, leading to the diphoton-plus-Emiss
T signature. For

this model with a bino-like NLSP, a typical production and decay channel for strong (gluino) production
is exhibited in Figure 1. Finally, it should be noted that the phenomenology relevant to this search has a
negligible dependence on the ratio tan � of the two SUSY Higgs-doublet vacuum expectation values; for
this analysis tan � is set to 1.5.

2 Samples of simulated processes

For the GGM models under study, the SUSY mass spectra and branching fractions are calculated us-
ing SUSPECT 2.41 [15] and SDECAY 1.3b [16], respectively, inside the package SUSY-HIT 1.3 [17]. The
Monte Carlo (MC) SUSY signal samples are produced using Herwig++ 2.7.1 [18] with CTEQ6L1 parton
distribution functions (PDFs) [19]. Signal cross sections are calculated to next-to-leading order (NLO) in
the strong coupling constant, including, for the case of strong production, the resummation of soft gluon
emission at next-to-leading-logarithmic accuracy (NLO+NLL) [20–24]. The nominal cross section and

3

Search for Higgs decaying to 
additional invisible modes: Higgs 

portal to dark matter?

Search for SUSY gluino-neutralino 
decays to diphoton + missing energy

10. Search for invisible decays of the Higgs boson 110

Z

Z

h

q

q̄

ℓ+

ℓ−

χ

χ

Figure 10.1: Feynman diagram for the associated production of a Higgs boson with a Z boson. The
Z boson decays to leptons (e, µ, τ) and the Higgs boson decays to invisible particles, generically
represented by χ.

to leptons (e, µ, or τ) the cross section for this process is 0.025 fb so that fewer than one event is

expected in the full 2012 dataset.

H
W+

W−

ℓ

ν̄

ν

(a)

H

ν̄

ν

(b)

H

Z

Z

ν̄

ν

ν

ν̄

(c)

Figure 10.2: Feynman diagrams representing invisible decays of the Higgs boson. Figure (a) shows
the production of two neutrinos through two intermediate W bosons. This decay decay mode is
helicity suppressed because the Higgs boson is a spin 0 state. Figure (b) shows the direct coupling of
the Higgs boson to two neutrinos. Although the nature of this coupling is not known, it is expected
to be extremely small because the neutrino mass is small. It is also highly suppressed by helicity as
in Figure (a). Figure (c) is then the main Standard Model invisible decay mode of the Higgs boson.
The Higgs boson decays to two Z bosons which both decay to neutrinos

10.2 Analysis overview

In essence this analysis searches for an excess of events over the Standard Model background in the

ℓℓ+Emiss
T channel. A number of backgrounds that contribute at different levels must be accounted

for. A brief summary of these backgrounds is presented below.

• Continuum ZZ → ℓℓνν is irreducible and contributes approximately 70% of the total back-

ground.

⇒

⇒
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We need high energies

15

6 2. the theoretical situation
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Figure 2.2: The “Livingston plot”, showing the e↵ective energy of collisions probed for various col-
lider and fixed-target particle experiments as if they were each fixed-target experiments,
as a function of the time the experiment began taking data [16].
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Figure 3.1: Production cross sections from proton-(anti)proton collisions for several processes of
interest as a function of center-of-momentum energy,

p
s. The discontinuity at ⇡ 4 TeV

is from the di↵erence in pp̄ cross sections on the left for the Tevatron, and pp cross
sections on the right for the LHC. The vertical lines indicate the center-of-momentum
energy for the Tevatron at 1.96 TeV (2001-2011), for the LHC at 7 TeV (2010-2011) and
8 TeV (2012) and 13 TeV (target for future 2015 run) [54, 55].
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Large Hadron Collider
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• 1011 protons / bunch
• 1000 bunches/ beam
• 20 MHz , 50 ns bunch spacing
• 1-40 interactions / crossing
• 0.5 × 109 interactions / sec

• 27 km circumference
• 1232 dipoles: 15 m , 8.3 T
• 100 tons liquid He, 1.9 K
• p-p collisions at √s = 7-8 TeV
• inst. luminosity = 1032-1034 cm-2s-1

Geneva, Switzerland
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ATLAS Detector

T. Rex

Humans  
(for scale)

ATLAS is a 7 story tall, 100 megapixel “camera”, taking 3-D pictures of proton-
proton collisions 40 million times per second, saving 10 million GB of data per 
year, using a world-wide computing grid with over 100,000 CPUs.  The 
collaboration involves more than 3000 scientists and engineers.

proton beam
p+

p+
Tracker

Muon Spectrometer

Calorimeter

collision point



µ

τ-jet

jet

• muons

• electrons & photons

• jets of hadrons

• τ- and b-tagged jets

• missing energy

What do we reconstruct?

How do we search?

SM 
W, Z, top,...

Higgs 
H→ɣɣ, ZZ, WW, ....

SUSY  
l+jets,ɣ+jets, ...

Exotics 
Z’, W’, ...

ATLAS Physics Groups

Currently ATLAS has published 579+ papers 
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propositions

true beliefs

knowledge
false

well-formed

false positives

good guesses

ill-formed

nonsense

denial

lucky denial

Gettier cases

(CC-BY 4.0)  2014 Ryan Reece  philosophy-in-figures.tumblr.com  

justified

20

Knowledge = JTB-G

from: http://philosophy-in-figures.tumblr.com/
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Problem of induction
• Our justification can be 

‣ deductive: following by definition (logic/
mathematics)

‣ inductive: generalizing a universal based on 
limited data

• Induction is always susceptible possible 
“black swans”.

• Later, 20th century positivism can largely 
be seen as a project staying true to the 
epistemological methods of science, but 
without the statistical confidence to 
make claims about the reality of their 
models (metaphysics).

21

David Hume (1711-1776)
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A main goal of this talk
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Figure 10: The 95% confidence level upper bound on the ratio ⇠2 = (gHZZ/gSM
HZZ)2 (see text). The dark

and light shaded bands around the median expected line correspond to the 68% and 95% probability
bands. The horizontal lines correspond to the Standard Model coupling. (a): For Higgs boson decays
predicted by the Standard Model; (b): for the Higgs boson decaying exclusively into bb̄ and (c): into
⌧+⌧� pairs.
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is less than or equal to one would indicate that that particular Higgs boson mass is excluded at the 95% C.L.
The combinations of results of each single experiment, as used in this Tevatron combination, yield the following

ratios of 95% C.L. observed (expected) limits to the SM cross section: 3.6 (3.2) for CDF and 3.7 (3.9) for DØ at
mH = 115 GeV/c2, and 1.5 (1.6) for CDF and 1.3 (1.8) for DØ at mH = 165 GeV/c2.

The ratios of the 95% C.L. expected and observed limit to the SM cross section are shown in Figure 4 for the
combined CDF and DØ analyses. The observed and median expected ratios are listed for the tested Higgs boson
masses in Table XVIII for mH � 150 GeV/c2, and in Table XIX for mH � 155 GeV/c2, as obtained by the Bayesian
and the CLS methods. In the following summary we quote only the limits obtained with the Bayesian method
since they are slightly more conservative (based on the expected limits) for the quoted values, but all the equivalent
numbers for the CLS method can be retrieved from the tables. We obtain the observed (expected) values of 2.5
(2.4) at mH = 115 GeV/c2, 0.99 (1.1) at mH = 160 GeV/c2, 0.86 (1.1) at mH = 165 GeV/c2, and 0.99 (1.4) at
mH = 170 GeV/c2. We exclude at the 95% C.L. the production of a standard model Higgs boson with mass between
160 and 170 GeV/c2. This result is obtained with both Bayesian and CLS calculations.
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FIG. 4: Observed and expected (median, for the background-only hypothesis) 95% C.L. upper limits on the ratios to the
SM cross section, as functions of the Higgs boson mass for the combined CDF and DØ analyses. The limits are expressed
as a multiple of the SM prediction for test masses (every 5 GeV/c2) for which both experiments have performed dedicated
searches in di↵erent channels. The points are joined by straight lines for better readability. The bands indicate the 68% and
95% probability regions where the limits can fluctuate, in the absence of signal. The limits displayed in this figure are obtained
with the Bayesian calculation.

Figure 12: (left) The 95% CL upper limit on the coupling for Higgs production at LEP, ⇠2 =
(gHZZ/gSM

HZZ)2, as a function of the Higgs mass (ALEPH, DELPHI, L3, and OPAL
Collaborations 2003). (right) The 95% CL upper limit on the signal strength for the
SM Higgs boson as a function of its mass (CDF and DØ Collaborations 2009).
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Figure 13: The distribution of the ��2 = �2��2
min as a function of the SM Higgs mass, mH , for the

combined LEP-Tevatron EW fit. The blue band illustrates the theoretical uncertainty
due to missing higher order corrections. The yellow vertical bands show the mH regions
excluded by LEP-II (up 114 GeV) and the Tevatron (160–170 GeV), as of August 2009.
The best-fit result is mH = 87+35

�26 GeV, equivalent to an upper limit of mH < 157 GeV
at 95% CL (ALEPH, CDF, DØ, DELPHI, L3, OPAL, and SLD Collaborations 2009).
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[arxiv:0903.4001]

I want to facilitate an appreciation for statistical confidence 
intervals like below, and try to touch ground with how 
LHC physicists go from collecting and reducing data to 
performing a statistical test.

Higgs was later found in 2012 by 
ATLAS and CMS with mH ≈125 GeV

Lot’s of important details glossed 
over. Great pedagogical documents 
on statistics:
‣ Cranmer, K. “Practical Statistics 
for the LHC”. [arxiv:1503.07622]
‣ Cowan, G. (1998). Statistical Data 
Analysis.
‣ ATLAS Higgs Combination 
[arxiv:1207.0319]
‣ Cranmer et al. [arxiv:1007.1727]
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Scattering cross sections
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A.1 quantum mechanics 209

The factor, ", is a dimensionless variable to account for experimental ine�ciencies in reconstruct-

ing/identifying/selecting the process. The di↵erential scattering cross section of 2 ! n process can

be calculated from the n + 2-point function, which can be expressed in terms of its irreducible matrix

element as
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out-going particles, one can further simplfy d� to
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where CM denotes that the d� is valid in the center-of-momentum reference frame, and ECM is the

center-of-momentum energy of the incoming two particles.

Integrating dN over some running time for the experiment and over the kinematic phase-space of

the process in question gives the theoretical prediction for the expected number of events observed:

N =

Z
dt L
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dt L

◆
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where A is a dimensionless variable to account for the acceptance, the fraction of events produced

in the instrumented fiducial volume selected in the experiment:
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and C is a dimensionless variable to account for the overall experimental e�ciency to reconstruct

and identify events from the process:

C =

R
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dt L
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In practice, high-energy physics experiments generally estimate these integrals numerically with

Monte Carlo methods, using matrix-element event generators and often very detailed simulations103

of the geometry, material, and instrumentation of the experiments. The integrated luminosity,
R

dt L, is measured independently [180, 319].

A.1.6 Gauge invariance

U(1)EM local gauge invariance

As discussed previously, gauge invariance plays an important role in constructing the SM. As an

example, consider the U(1)EM gauge invariance of electrodynamics. The fundamental representation

103 See the brief discussion of ATLAS simulation in Section 3.6.
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according to the Lehmann-Symanzik-Zimmermann (LSZ) reduction formula [318] as
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where G̃(n) denotes the momentum-space Fourier transform of the space-time n-point correlation

function:

G̃(n)(p1, . . . , pn) ⌘
nY

i

Z
d4pi

(2 ⇡)4
e�i pi·xi

�
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The expansion of the in-coming and out-going states as momentum eigenstates introduces inverse

factors of the propagators that cancel the factors of propagators appearing in G(n). The irreducible

matrix element, M, is defined as the remaining part of the diagram, with the external lines held

on mass-shell, but summing over all connected intermediate possible diagrams, and integrating over

all possible virtual momenta. An overall momentum-conserving �-function will always result, and a

factor of �i is often factored out by convention.

Scattering cross sections

The scattering theory developed from QFT is especially useful for describing the event rates in

experiments at particle colliders. At particle colliders like the LHC, two anti-parallel beams of

particles of known energies are squeezed to cross in a small cross-sectional area of the order of a few

hundred square microns. In such a scenario one can show that the di↵erential collision rate for some

process, dN/dt, factors into the luminosity, L, that characterizes the flux of particles in the beam

per area per time, and the di↵erential cross section, d�, an area proportional to the rate for that

process:

dN = " L dt d� .

At colliders, it can be shown that the differential 
rate of any given process factors as

= (efficiency) (luminosity) d(time) d(cross section)
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In practice, high-energy physics experiments generally estimate these integrals numerically with

Monte Carlo methods, using matrix-element event generators and often very detailed simulations103

of the geometry, material, and instrumentation of the experiments. The integrated luminosity,
R

dt L, is measured independently [180, 319].

A.1.6 Gauge invariance

U(1)EM local gauge invariance

As discussed previously, gauge invariance plays an important role in constructing the SM. As an

example, consider the U(1)EM gauge invariance of electrodynamics. The fundamental representation

103 See the brief discussion of ATLAS simulation in Section 3.6.

QFT shows that the cross section can be calculated in 
terms of a matrix element.

The number of expected events 
can be calculated by integrating 
the differential cross section over 
the running of the experiment.

= (integrated luminosity) (acceptance) (efficiency) (cross section)
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The expansion of the in-coming and out-going states as momentum eigenstates introduces inverse

factors of the propagators that cancel the factors of propagators appearing in G(n). The irreducible

matrix element, M, is defined as the remaining part of the diagram, with the external lines held

on mass-shell, but summing over all connected intermediate possible diagrams, and integrating over

all possible virtual momenta. An overall momentum-conserving �-function will always result, and a
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Scattering cross sections

The scattering theory developed from QFT is especially useful for describing the event rates in

experiments at particle colliders. At particle colliders like the LHC, two anti-parallel beams of

particles of known energies are squeezed to cross in a small cross-sectional area of the order of a few

hundred square microns. In such a scenario one can show that the di↵erential collision rate for some

process, dN/dt, factors into the luminosity, L, that characterizes the flux of particles in the beam

per area per time, and the di↵erential cross section, d�, an area proportional to the rate for that

process:

dN = " L dt d� .
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Figure 3.24: TODO [296].

 

ATLAS Computing Technical Design Report
 20 June 2005

54 3    Offline Software  

The stages in the simulation data-flow pipeline are described in more detail in the following 
sections. In addition to the full simulation framework, ATLAS has implemented a fast simula-
tion framework that reduces substantially the processing requirements in order to allow larger 
samples of events to be processed rapidly, albeit with reduced precision. Both these frameworks 
are described below.

3.8.2  Generators

Event generators are indispensable as tools for the modelling of the complex physics processes 
that lead to the production of hundreds of particles per event at LHC energies. Generators are 
used to set detector requirements, to formulate analysis strategies, or to calculate acceptance 
corrections. They also illustrate uncertainties in the physics modelling.

Generators model the physics of hard processes, initial- and final-state radiation, multiple inter-
actions and beam remnants, hadronization and decays, and how these pieces come together. 

The individual generators are run from inside Athena and their output is converted into a com-
mon format by mapping into HepMC. A container of these is placed into the transient event 
store under StoreGate and can be made persistent. The event is presented for downstream use 
by simulation, for example by G4ATLAS simulation (using Geant4) or the Atlfast simulation. 
These downstream clients are shielded thereby from the inner details of the various event gen-
erators.

Each available generator has separate documentation describing its use. Simple Filtering Algo-
rithms are provided, as well as an example of how to access the events and histogram the data.

Figure 3-5  The simulation data flow. Rectangles represent processing stages and rounded rectangles repre-
sent objects within the event data model. Pile-up and ROD emulation are optional processing stages.

Generator HepMC Particle Filter MCTruth
(Gen) Simulation
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Raw Data 
Objects

ByteStream ATLAS
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Figure 3.25: TODO [275].

ATLAS [301]. Samples of s-channel and t-channel single top events were generated with AcerMC [302],1455

with the parton shower and hadronization done with PYTHIA [303]. Signal samples representing1456

hypothetical Z 0 decays consistent with the SSM were generated with PYTHIA. Activity from multiple1457

pile-up interactions per bunch crossing was modeled by overlaying simulated minimum bias events,1458

generated with PYTHIA and specially tuned for minimum-bias interactions at the LHC [304], over1459

the original hard-scattering event. The e↵ects of QED radiation were generated with PHOTOS [305],1460

and hadronic tau decays were generated with TAUOLA [306].1461
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Fig. 9. Reconstructed dielectron mass distribution for J/ψ → ee decays, as measured after applying the baseline Z → ee
calibration. The data (full circles with statistical error bars) are compared to the sum of the MC signal (light filled histogram)
and the background contribution (darker filled histogram) modelled by a Chebyshev polynomial. The mean (µ) and the Gaussian
width (σ) of the fitted Crystal Ball function are given both for data and MC.

Table 4. Measured effective constant term cdata (see Eq. 6) from the observed width of the Z → ee peak for different calorimeter
η regions.

Sub-system η-range Effective constant term, cdata

EMB |η| < 1.37 1.2% ± 0.1% (stat) + 0.5%
− 0.6% (syst)

EMEC-OW 1.52 < |η| < 2.47 1.8% ± 0.4% (stat) ± 0.4% (syst)
EMEC-IW 2.5 < |η| < 3.2 3.3% ± 0.2% (stat) ± 1.1% (syst)
FCal 3.2 < |η| < 4.9 2.5% ± 0.4% (stat) + 1.0%

− 1.5% (syst)

The results obtained for the effective constant term
are shown in Table 4. Several sources of systematic uncer-
tainties are investigated. The dominant uncertainty is due
to the uncertainty on the sampling term, as the constant
term was extracted assuming that the sampling term is
correctly reproduced by the simulation. To assign a sys-
tematic uncertainty due to this assumption, the simulation
was modified by increasing the sampling term by 10%. The
difference in the measured constant term is found to be
about 0.4% for the EM calorimeter and 1% for the forward
calorimeter. The uncertainty due to the fit procedure was
estimated by varying the fit range. The uncertainty due
to pile-up was investigated by comparing simulated MC
samples with and without pile-up and was found to be
negligible.

6 Efficiency measurements

In this section, the measurements of electron selection effi-
ciencies are presented using the tag-and-probe method [31,
32]. Z → ee events provide a clean environment to study
all components of the electron selection efficiency dis-
cussed in this paper. In certain cases, such as identification
or trigger efficiency measurements, the statistical power
of the results is improved using W → eν decays, as well.
To extend the reach towards lower transverse energies,

J/ψ → ee decays are also used to measure the electron
identification efficiency. However the available statistics
of J/ψ → ee events after the trigger requirements in the
2010 data sample are limited and do not allow a precise
separation of the isolated signal component from b-hadron
decays and from background processes.

6.1 Methodology

A measured electron spectrum needs to be corrected for
efficiencies related to the electron selection in order to de-
rive cross-sections of observed physics processes or limits
on new physics. This correction factor is defined as the
product of different efficiency terms. For the case of a sin-
gle electron in the final state one can write:

C = ϵevent · αreco · ϵID · ϵtrig · ϵisol. (7)

Here ϵevent denotes the efficiency of the event preselec-
tion cuts, such as primary vertex requirements and event
cleaning. αreco accounts for the basic reconstruction ef-
ficiency to find an electromagnetic cluster and to match
it loosely to a reconstructed charged particle track in the
fiducial region of the detector and also for any kinematic
and geometrical cuts on the reconstructed object itself.
ϵID denotes the efficiency of the identification cuts rela-
tive to reconstructed electron objects. ϵtrig stands for the

Building a model
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N(expected) = N(correct-ID) + N(fake)} }
• Top-down , “data-driven”

• various magic with data 
depending on the analysis and 
your creativity

• side-band fit

• fake-factor method

• Bottom-up 

• well-identified objects 
have scale factors from 
control regions

• estimated with detailed 
Monte Carlo simulation

[arxiv:1110.3174]

J/ψ

background

Bottom-up  
Monte Carlo

Data-driven  
side-band fit
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FIG. 1. Invariant or transverse mass distributions for the selected candidate events, the total background and the signal expected
in the following channels: (a) H → γγ, (b) H → ZZ(∗) → ℓ+ℓ−ℓ+ℓ− in the entire mass range, (c) H → ZZ(∗) → ℓ+ℓ−ℓ+ℓ− in
the low mass range, (d) H → ZZ → ℓ+ℓ−νν, (e) b-tagged selection and (f) untagged selection for H → ZZ → ℓ+ℓ−qq, (g) H →
WW (∗) → ℓ+νℓ−ν+0-jets, (h) H → WW (∗) → ℓ+νℓ−ν+1-jet, (i) H → WW (∗) → ℓ+νℓ−ν+2-jets, (j) H → WW → ℓνqq′+0-
jets, (k) H → WW → ℓνqq′+1-jet and (l) H → WW → ℓνqq′+2-jets. The H → WW (∗) → ℓ+νℓ−ν+2-jets distribution is
shown before the final selection requirements are applied.

Is this significant?

26[arxiv:1207.0319]

• How can we be precise  
and rigorous about how  
confident we are that a  
model is wrong?

‣ Hypothesis testing 

• How can we calculate the  
best-fit estimate of some  
parameter?

‣ Point estimation and  
confidence intervals

3 events

Has a local p0 of ≈ 2%

Statistical (and philosophical)  
 questions:
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• A frequentist confidence interval is constructed such that, given 
the model, if the experiment were repeated, each time creating 
an interval, 95% (or other CL) of the intervals would contain the 
true population parameter (i.e. the interval has ≈95% coverage).

‣ They can be one-sided exclusions, e.g. m(Z’) > 2.0 TeV at 95% CL

‣ Two-sided measurements,  e.g. mH = 125.1 ± 0.2 GeV at 68% CL

‣ Contours in 2 or  more parameters 
 

• This is not the same as saying “There is a 95% probability that the 
true parameter is in my interval”.  Any probability assigned to a 
parameter strictly involves a Bayesian prior probability.

• Bayes’ theorem: P(Theory | Data) ∝ P(Data | Theory) P(Theory)
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We’ll discuss how one goes from the statistic on the left to the plot on the
right.

Ryan D. Reece (Penn) Likelihood Functions for SUSY ryan.reece@cern.ch 4 / 24“likelihood” “prior”
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Marked Poisson Process
Channel: a subset of the data defined by some selection 
requirements.  
‣ eg. all events with 4 electrons with energy > 10 GeV
‣ n: number of events observed in the channel
‣ ν: number of events expected in the channel

Discriminating variable: a property of those events that can be 
measured and which helps discriminate the signal from background
‣ eg. the invariant mass of two particles 
‣ f(x): the p.d.f. of the discriminating variable x

Marked Poisson Process:

56

f(D|⌫) = Pois(n|⌫)
nY

e=1

f(xe)

D = {x1, . . . , xn}

Statistical model

28

values of x and this ensemble gives rise to a probability density function (pdf) of x, written f(x), which
has the important property that it is normalized to unity

Z
f(x) dx = 1 .

In the case of discrete quantities, such as the number of events satisfying some event selection, the
integral is replaced by a sum. Often one considers a parametric family of pdfs

f(x|↵) ,

read “f of x given ↵” and, henceforth, referred to as a probability model or just model. The parameters
of the model typically represent parameters of a physical theory or an unknown property of the detector’s
response. The parameters are not frequentist in nature, thus any probability statement associated with ↵
is Bayesian.3 In order to make their lack of frequentist interpretation manifest, model parameters will be
written in greek letters, e.g.: µ, ✓, ↵, ⌫.4 From the full set of parameters, one is typically only interested
in a few: the parameters of interest. The remaining parameters are referred to as nuisance parameters,
as we must account for them even though we are not interested in them directly.

While f(x) describes the probability density for the observable x for a single event, we also need
to describe the probability density for a dataset with many events, D = {x

1

, . . . , xn}. If we consider the
events as independently drawn from the same underlying distribution, then clearly the probability density
is just a product of densities for each event. However, if we have a prediction that the total number of
events expected, call it ⌫, then we should also include the overall Poisson probability for observing n
events given ⌫ expected. Thus, we arrive at what statisticians call a marked Poisson model,

f(D|⌫, ↵) = Pois(n|⌫)

nY

e=1

f(xe|↵) , (1)

where I use a bold f to distinguish it from the individual event probability density f(x). In prac-
tice, the expectation is often parametrized as well and some parameters simultaneously modify the ex-
pected rate and shape, thus we can write ⌫ ! ⌫(↵). In RooFit both f and f are implemented with
a RooAbsPdf; where RooAbsPdf::getVal(x) always provides the value of f(x) and depending on
RooAbsPdf::extendMode() the value of ⌫ is accessed via RooAbsPdf::expectedEvents().

The likelihood function L(↵) is numerically equivalent to f(x|↵) with x fixed – or f(D|↵) with
D fixed. The likelihood function should not be interpreted as a probability density for ↵. In particular,
the likelihood function does not have the property that it normalizes to unity

⇠⇠⇠⇠⇠⇠⇠⇠:Not True!

Z
L(↵) d↵ = 1 .

It is common to work with the log-likelihood (or negative log-likelihood) function. In the case of a
marked Poisson, we have what is commonly referred to as an extended likelihood [3]

� ln L(↵) = ⌫(↵) � n ln ⌫(↵)| {z }
extended term

�
nX

e=1

ln f(xe) + ln n!| {z }
constant

.

To reiterate the terminology, probability density function refers to the value of f as a function of x given
a fixed value of ↵; likelihood function refers to the value of f as a function of ↵ given a fixed value of x;
and model refers to the full structure of f(x|↵).

3Note, one can define a conditional distribution f(x|y) when the joint distribution f(x, y) is defined in a frequentist sense.
4While it is common to write s and b for the number of expected signal and background, these are parameters not observ-

ables, so I will write ⌫
S

and ⌫
B

. This is one of few notational differences to Ref. [1].
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In the case of discrete quantities, such as the number of events satisfying some event selection, the
integral is replaced by a sum. Often one considers a parametric family of pdfs
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response. The parameters are not frequentist in nature, thus any probability statement associated with ↵
is Bayesian.3 In order to make their lack of frequentist interpretation manifest, model parameters will be
written in greek letters, e.g.: µ, ✓,↵, ⌫.4 From the full set of parameters, one is typically only interested
in a few: the parameters of interest. The remaining parameters are referred to as nuisance parameters,
as we must account for them even though we are not interested in them directly.

While f(x) describes the probability density for the observable x for a single event, we also need
to describe the probability density for a dataset with many events, D = {x

1

, . . . , xn}. If we consider the
events as independently drawn from the same underlying distribution, then clearly the probability density
is just a product of densities for each event. However, if we have a prediction that the total number of
events expected, call it ⌫, then we should also include the overall Poisson probability for observing n
events given ⌫ expected. Thus, we arrive at what statisticians call a marked Poisson model,
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pected rate and shape, thus we can write ⌫ ! ⌫(↵). In RooFit both f and f are implemented with
a RooAbsPdf; where RooAbsPdf::getVal(x) always provides the value of f(x) and depending on
RooAbsPdf::extendMode() the value of ⌫ is accessed via RooAbsPdf::expectedEvents().

The likelihood function L(↵) is numerically equivalent to f(x|↵) with x fixed – or f(D|↵) with
D fixed. The likelihood function should not be interpreted as a probability density for ↵. In particular,
the likelihood function does not have the property that it normalizes to unity
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ln f(xe) + ln n!| {z }
constant

.

To reiterate the terminology, probability density function refers to the value of f as a function of x given
a fixed value of ↵; likelihood function refers to the value of f as a function of ↵ given a fixed value of x;
and model refers to the full structure of f(x|↵).

3Note, one can define a conditional distribution f(x|y) when the joint distribution f(x, y) is defined in a frequentist sense.
4While it is common to write s and b for the number of expected signal and background, these are parameters not observ-

ables, so I will write ⌫
S

and ⌫
B

. This is one of few notational differences to Ref. [1].
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=
data “Likelihood”

function of params 
with data fixed

[arxiv:1503.07622, https://indico.cern.ch/event/243641/]

1. parameters of interest {µ}:

‣ e.g. Higgs mass (mH) and 
signal strength (µ)  
µ=0 no signal, µ=1 nominal signal

2. nuisance parameters {θ}:  
systematic uncertainties to be “profiled” away 
by maximizing L for a given µ.

‣ e.g. luminosity uncert., jet-energy 
scale, electron energy scale, electron 
identification efficiency, etc.

{   } parameters include:

values of x and this ensemble gives rise to a probability density function (pdf) of x, written f(x), which
has the important property that it is normalized to unity

Z
f(x) dx = 1 .

In the case of discrete quantities, such as the number of events satisfying some event selection, the
integral is replaced by a sum. Often one considers a parametric family of pdfs

f(x|↵) ,

read “f of x given ↵” and, henceforth, referred to as a probability model or just model. The parameters
of the model typically represent parameters of a physical theory or an unknown property of the detector’s
response. The parameters are not frequentist in nature, thus any probability statement associated with ↵
is Bayesian.3 In order to make their lack of frequentist interpretation manifest, model parameters will be
written in greek letters, e.g.: µ, ✓, ↵, ⌫.4 From the full set of parameters, one is typically only interested
in a few: the parameters of interest. The remaining parameters are referred to as nuisance parameters,
as we must account for them even though we are not interested in them directly.

While f(x) describes the probability density for the observable x for a single event, we also need
to describe the probability density for a dataset with many events, D = {x

1

, . . . , xn}. If we consider the
events as independently drawn from the same underlying distribution, then clearly the probability density
is just a product of densities for each event. However, if we have a prediction that the total number of
events expected, call it ⌫, then we should also include the overall Poisson probability for observing n
events given ⌫ expected. Thus, we arrive at what statisticians call a marked Poisson model,

f(D|⌫, ↵) = Pois(n|⌫)

nY

e=1

f(xe|↵) , (1)

where I use a bold f to distinguish it from the individual event probability density f(x). In prac-
tice, the expectation is often parametrized as well and some parameters simultaneously modify the ex-
pected rate and shape, thus we can write ⌫ ! ⌫(↵). In RooFit both f and f are implemented with
a RooAbsPdf; where RooAbsPdf::getVal(x) always provides the value of f(x) and depending on
RooAbsPdf::extendMode() the value of ⌫ is accessed via RooAbsPdf::expectedEvents().

The likelihood function L(↵) is numerically equivalent to f(x|↵) with x fixed – or f(D|↵) with
D fixed. The likelihood function should not be interpreted as a probability density for ↵. In particular,
the likelihood function does not have the property that it normalizes to unity

⇠⇠⇠⇠⇠⇠⇠⇠:Not True!

Z
L(↵) d↵ = 1 .

It is common to work with the log-likelihood (or negative log-likelihood) function. In the case of a
marked Poisson, we have what is commonly referred to as an extended likelihood [3]

� ln L(↵) = ⌫(↵) � n ln ⌫(↵)| {z }
extended term

�
nX

e=1

ln f(xe) + ln n!| {z }
constant

.

To reiterate the terminology, probability density function refers to the value of f as a function of x given
a fixed value of ↵; likelihood function refers to the value of f as a function of ↵ given a fixed value of x;
and model refers to the full structure of f(x|↵).

3Note, one can define a conditional distribution f(x|y) when the joint distribution f(x, y) is defined in a frequentist sense.
4While it is common to write s and b for the number of expected signal and background, these are parameters not observ-

ables, so I will write ⌫
S

and ⌫
B

. This is one of few notational differences to Ref. [1].
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histograms

template morphing

Advanced modeling building  – template morphing 

• At LHC shapes are often derived from histograms, instead of 
relying on analytical shapes . Construct parametric from 
histograms  using  ‘template  morphing’  techniques 

Parametric  model:  f(x|α) 

Input 
histograms 
from simulation 

↵ = +1

↵ = �1↵ = 0

https://indico.cern.ch/event/243641/
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Visualizing the model for one channel
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10 ATLAS collaboration: Search for the Standard Model Higgs Boson

Table 5. Numbers of events estimated as background, observed in data and expected from signal in the H → ZZ → ℓℓqq search
for low mass (mH < 360 GeV) and high mass (mH ≥ 360 GeV) selections. The signal, quoted at two mass points, includes small
contributions from ℓℓℓℓ and ℓℓνν decays. Electron and muon channels are combined. The uncertainties shown are the statistical
and systematic uncertainties, respectively.

Source low mass selection high mass selection
Z+jets 214± 4± 27 9.1± 0.9± 1.4
W+jets 0.33 ± 0.16 ± 0.17 −

tt̄ 0.94 ± 0.09 ± 0.25 0.08 ± 0.02± 0.03
Multi-jet 3.81 ± 0.65 ± 1.91 0.11 ± 0.11± 0.06

ZZ 3.80 ± 0.10 ± 0.73 0.30 ± 0.03± 0.06
WZ 2.83 ± 0.05 ± 0.88 0.29 ± 0.02± 0.10

Total background 226± 4± 28 9.9± 0.9± 1.5
H → ZZ → ℓℓqq 0.60 ± 0.01 ± 0.12 (mH = 200 GeV) 0.24± (< 0.001) ± 0.05 (mH = 400 GeV)

Observed 216 11

data. The multi-jet background in the electron channel is
derived from a sample where the electron identification
requirements are relaxed. In the muon channel, the multi-
jet background is estimated from a simulated sample of
semi-leptonically decaying b- and c-quarks and found to be
negligible after the application of the mℓℓ selection. This
was verified in data using leptons with identical charges.

6.3.2 Results for the H → ZZ → ℓℓνν search

The H → ZZ → ℓℓνν analysis is performed for Higgs
boson masses between 200 GeV and 600 GeV in steps of
20 GeV. Table 6 summarises the numbers of events ob-
served in the data, the estimated numbers of background
events and the expected numbers of signal events for two
selectedmH values. For the low mass selections, five events
are observed in data compared to an expected number of
events from background sources only of 5.8±0.5±1.3. The
corresponding results for the high mass selections are five
events observed in data compared to an expected yield of
3.5±0.4±0.8 events from background sources only. In ad-
dition to the H → ZZ → ℓℓνν decays, several other Higgs
boson channels give a non-negligible contribution to the
total expected signal yield. In particular, H → WW (∗) →
ℓνℓν decays can lead to final states that are very similar
to H → ZZ → ℓℓνν decays. They are found to contribute
significantly to the signal yield at low mH values. The
expected number of events from H → WW (∗) → ℓνℓν de-
cays relative to that from H → ZZ → ℓℓνν decays is 76%
for mH = 200 GeV and 9% for mH = 300 GeV. The kine-
matic selections prevent individual candidates from being
accepted by both searches. The Emiss

T distribution before
vetoing events with low Emiss

T is shown in Fig. 7.

7 Combination method

The limit-setting procedure uses the power-constrained
profile likelihood method known as the Power Constrained
Limit, PCL [13, 14, 64]. This method is preferred to the
more familiar CLs [15] technique because the constraint
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Fig. 7. Distribution of missing transverse energy in the H →
ZZ → ℓℓνν search in the electron channel before vetoing events
with low Emiss

T . The expected yield for a Higgs boson with
mH = 400 GeV is also shown.

is more transparently defined and it has reduced overcov-
erage resulting in a more precise meaning of the quoted
confidence level. The resulting PCL median limits have
been found to be around 20% tighter than those obtained
with the CLs method in several Higgs searches. The ap-
plication of the PCL method to each of the individual
Higgs boson search channels is described in Refs. [7–11].
A similar procedure is used here. The individual analyses
are combined by maximising the product of the likelihood
functions for each channel and computing a likelihood ra-
tio. A single signal normalisation parameter µ is used for
all analyses, where µ is the ratio of the hypothesised cross
section to the expected Standard Model cross section.

Each channel has sources of systematic uncertainty,
some of which are common with other channels. Table 7
lists the common sources of systematic uncertainties, which
are taken to be 100% correlated with other channels. Let
the search channels be labelled by l (l = H → γγ, H →
WW , . . . ), the background contribution, j, to channel l
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General probability model with many channels and constraints:
constraintschannels events

choice of renormalization and factorization scales and missing higher-order corrections in a theoretical
calculation are not statistical. Uncertainties from parton density functions are a bit of a hybrid as they are
derived from data but require theoretical inputs and make various modeling assumptions. In a Bayesian
setting there is no problem with including a prior on the parameters associated to theoretical uncertain-
ties. In contrast, in a formal frequentist setting, one should not include constraint terms on theoretical
uncertainties that lack a frequentist interpretation. That leads to a very cumbersome presentation of re-
sults, since formally the results should be shown as a function of the uncertain parameter. In practice,
the groups often read Eq. 5 to arrive at an effective frequentist constraint term.

I will denote the set of parameters with constraint terms as S and the global observables G = {ap}
with p 2 S. By including the constraint terms explicitly (instead of implicitly as an additional channel)
we arrive at the total probability model, which we will not need to generalize any further:

ftot(Dsim, G|↵) =

Y

c2channels

"
Pois(nc|⌫c(↵))

n
cY

e=1

fc(xce|↵)

#
·
Y

p2S
fp(ap|↵p) . (6)

3 Physics questions formulated in statistical language
3.1 Measurement as parameter estimation
One of the most common tasks of the working physicist is to estimate some model parameter. We do it
so often, that we often don’t realize it. For instance, the sample mean x̄ =

Pn
e=1

xe/n is an estimate for
the mean, µ, of a Gaussian probability density f(x|µ, �) = Gauss(x|µ, �). More generally, an estimator
↵̂(D) is some function of the data and its value is used to estimate the true value of some parameter ↵.
There are various abstract properties such as variance, bias, consistency, efficiency, robustness, etc [5].
The bias of an estimator is defined as B(↵̂) = E[↵̂] � ↵, where E means the expectation value of
E[↵̂] =

R
↵̂(x)f(x)dx or the probability-weighted average. Clearly one would like an unbiased estima-

tor. The variance of an estimator is defined as var[↵̂] = E[(↵ � E[↵̂])

2

]; and clearly one would like
an estimator with the minimum variance. Unfortunately, there is a tradeoff between bias and variance.
Physicists tend to be allergic to biased estimators, and within the class of unbiased estimators, there is
a well defined minimum variance bound referred to as the Cramér-Rao bound (that is the inverse of the
Fisher information, which we will refer to again later).

The most widely used estimator in physics is the maximum likelihood estimator (MLE). It is
defined as the value of ↵ which maximizes the likelihood function L(↵). Equivalently this value, ↵̂,
maximizes log L(↵) and minimizes � log L(↵). The most common tool for finding the maximum likeli-
hood estimator is Minuit, which conventionally minimizes � log L(↵) (or any other function) [6]. The
jargon is that one ‘fits’ the function and the maximum likelihood estimate is the ‘best fit value’.

When one has a multi-parameter likelihood function L(↵), then the situation is slightly more
complicated. The maximum likelihood estimate for the full parameter list, ˆ↵, is clearly defined. The
various components ↵̂p are referred to as the unconditional maximum likelihood estimates. In the physics
jargon, one says all the parameters are ‘floating’. One can also ask about maximum likelihood estimate
of ↵p is with some other parameters ↵o fixed; this is called the conditional maximum likelihood estimate
and is denoted ˆ↵̂p(↵o). These are important quantities for defining the profile likelihood ratio, which
we will discuss in more detail later. The concept of variance of the estimates is also generalized to
the covariance matrix cov[↵p, ↵p0 ] = E[(↵̂p � ↵p)(↵̂p0 � ↵p0)] and is often denoted ⌃pp0 . Note, the
diagonal elements of the covariance matrix are the same as the variance for the individual parameters, ie.
cov[↵p, ↵p] = var[↵p].

In the case of a Poisson model Pois(n|⌫) the maximum likelihood estimate of ⌫ is simply ⌫̂ = n.
Thus, it follows that the variance of the estimator is var[⌫̂] = var[n] = ⌫. Thus if the true rate is ⌫ one
expects to find estimates ⌫̂ with a characteristic spread around ⌫; it is in this sense that the measurement
has a estimate has some uncertainty or ‘error’ of

p
n. We will make this statement of uncertainty more

8
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Visualizing the combined model
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State of the art: At the time of the discovery, the combined Higgs 
search included 100 disjoint channels and >500 nuisance parameters

RooFit / RooStats: is the modeling language (C++) which provides 
technologies for collaborative modeling
‣ provides technology to publish likelihood functions digitally
‣ and more, it’s the full model so we can also generate pseudo-data
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At the time of the Higgs discovery 
(2012) combined model had 100 
channels & 500+ nuisance params.

[arxiv:1503.07622, https://indico.cern.ch/event/243641/]
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2 Example

The purpose of equation 2 is to estimate the variance of an estimator when
an analytic calculation is not practical. In this example, however, we will
study a case where an analytic calculation of the variance is trivial such that
we make the validity of equation 2 apparent.

Consider an experiment withN repeated measurements that are Gaussian
distributed. The likelihood function is therefore

L =
NY

i=1

1

�

p
2⇡

exp

✓
�(xi � µ)2

2�2

◆

The MLE for the mean, µ, can be found by maximizing the likelihood func-
tion, or equivalently, its natural logrhythm.

lnL = �N ln(�
p
2⇡)�

NX

i=1

(xi � µ)2

2�2

0 =
@ lnL

@µ

=
NX

i=1

(xi � µ)

�

2

) µ̂ =
1

N

NX

i=1

xi

Therefore the MLE of µ is just the mean of the sample, as one might expect.
Calculating the second derivative of the likelihood gives

@

2 lnL

@µ

2
= �N

�

2

Therefore, equation 2 gives the following for the variance of this estimator

�

2
µ̂ =

�

2

N

(3)

which can easily be shown to be the variance of the sample mean of any
distribution as follows.

Let

x̄ ⌘ 1

N

NX

i=1

xi

5
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Maximize             

⇒  minimize   
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Figure 1: Scans of twice the negative log-likelihood ratio �2 ln L(mH) as functions of the Higgs
boson mass mH for the ATLAS and CMS combination of the H ! gg (red), H ! ZZ ! 4`
(blue), and combined (black) channels. The dashed curves show the results accounting for
statistical uncertainties only, with all nuisance parameters associated with systematic uncer-
tainties fixed to their best-fit values. The 1 and 2 standard deviation limits are indicated by the
intersections of the horizontal lines at 1 and 4, respectively, with the log-likelihood scan curves.

and

m4`
H = 125.15 ± 0.40 GeV
= 125.15 ± 0.37 (stat.)± 0.15 (syst.) GeV.

(5)

The corresponding likelihood ratio scans are shown in Fig. 1.

A summary of the results from the individual analyses and their combination is presented in
Fig. 2.

The observed uncertainties in the combined measurement can be compared with expectations.
The latter are evaluated by generating two Asimov data sets [26], where an Asimov data set is
a representative event sample that provides both the median expectation for an experimental
result and its expected statistical variation, in the asymptotic approximation, without the need
for an extensive MC-based calculation. The first Asimov data set is a “prefit” sample, generated
using mH = 125.0 GeV and the SM predictions for the couplings, with all nuisance parameters
fixed to their nominal values. The second Asimov data set is a “postfit” sample, in which mH,
the three signal strengths µgg

ggF+tt̄H, µgg
VBF+VH, and µ4`, and all nuisance parameters are fixed to

their best-fit estimates from the data. The expected uncertainties for the combined mass are

dmHprefit = ±0.24 GeV = ±0.22 (stat.)± 0.10 (syst.) GeV (6)

e.g. Best-fit Higgs mass

A bird’s-eye view of the development and structure the SM of particle physics
ATLAS Collaboration / Physics Letters B 716 (2012) 1–29 11

Table 5
The expected numbers of signal (mH = 125 GeV) and background events after all
selections, including a cut on the transverse mass of 0.75mH < mT < mH for mH =
125 GeV. The observed numbers of events in data are also displayed. The eµ and
µe channels are combined. The uncertainties shown are the combination of the
statistical and all systematic uncertainties, taking into account the constraints from
control samples. For the 2-jet analysis, backgrounds with fewer than 0.01 expected
events are marked with ‘–’.

0-jet 1-jet 2-jet

Signal 20 ± 4 5 ± 2 0.34 ± 0.07

W W 101 ± 13 12 ± 5 0.10 ± 0.14
W Z (∗)/Z Z/W γ (∗) 12 ± 3 1.9 ± 1.1 0.10 ± 0.10
tt̄ 8 ± 2 6 ± 2 0.15 ± 0.10
tW /tb/tqb 3.4 ± 1.5 3.7 ± 1.6 –
Z/γ ∗ + jets 1.9 ± 1.3 0.10 ± 0.10 –
W + jets 15 ± 7 2 ± 1 –

Total background 142 ± 16 26 ± 6 0.35 ± 0.18

Observed 185 38 0

generators. The potential impact of interference between resonant
(Higgs-mediated) and non-resonant gg → W W diagrams [116] for
mT > mH was investigated and found to be negligible. The ef-
fect of the W W normalisation, modelling, and shape systematics
on the total background yield is 9% for the 0-jet channel and
19% for the 1-jet channel. The uncertainty on the shape of the
total background is dominated by the uncertainties on the nor-
malisations of the individual backgrounds. The main uncertainties
on the top background in the 0-jet analysis include those asso-
ciated with interference effects between tt̄ and single top, initial
state an final state radiation, b-tagging, and JER. The impact on
the total background yield in the 0-jet bin is 3%. For the 1-jet
analysis, the impact of the top background on the total yield is
14%. Theoretical uncertainties on the W γ background normalisa-
tion are evaluated for each jet bin using the procedure described
in Ref. [117]. They are ±11% for the 0-jet bin and ±50% for the
1-jet bin. For W γ ∗ with mℓℓ < 7 GeV, a k-factor of 1.3 ± 0.3 is
applied to the MadGraph LO prediction based on the compari-
son with the MCFM NLO calculation. The k-factor for W γ ∗/W Z (∗)

with mℓℓ > 7 GeV is 1.5±0.5. These uncertainties affect mostly the
1-jet channel, where their impact on the total background yield is
approximately 4%.

6.4. Results

Table 5 shows the numbers of events expected from a SM
Higgs boson with mH = 125 GeV and from the backgrounds, as
well as the numbers of candidates observed in data, after appli-
cation of all selection criteria plus an additional cut on mT of
0.75mH < mT < mH . The uncertainties shown in Table 5 include
the systematic uncertainties discussed in Section 6.3, constrained
by the use of the control regions discussed in Section 6.2. An ex-
cess of events relative to the background expectation is observed
in the data.

Fig. 6 shows the distribution of the transverse mass after all
selection criteria in the 0-jet and 1-jet channels combined, and for
both lepton channels together.

The statistical analysis of the data employs a binned likelihood
function constructed as the product of Poisson probability terms
for the eµ channel and the µe channel. The mass-dependent cuts
on mT described above are not used. Instead, the 0-jet (1-jet) sig-
nal regions are subdivided into five (three) mT bins. For the 2-jet
signal region, only the results integrated over mT are used, due
to the small number of events in the final sample. The statistical
interpretation of the observed excess of events is presented in Sec-
tion 9.

Fig. 6. Distribution of the transverse mass, mT, in the 0-jet and 1-jet analyses with
both eµ and µe channels combined, for events satisfying all selection criteria. The
expected signal for mH = 125 GeV is shown stacked on top of the background
prediction. The W + jets background is estimated from data, and W W and top
background MC predictions are normalised to the data using control regions. The
hashed area indicates the total uncertainty on the background prediction.

7. Statistical procedure

The statistical procedure used to interpret the data is described
in Refs. [17,118–121]. The parameter of interest is the global sig-
nal strength factor µ, which acts as a scale factor on the total
number of events predicted by the Standard Model for the Higgs
boson signal. This factor is defined such that µ = 0 corresponds
to the background-only hypothesis and µ = 1 corresponds to the
SM Higgs boson signal in addition to the background. Hypothe-
sised values of µ are tested with a statistic λ(µ) based on the
profile likelihood ratio [122]. This test statistic extracts the infor-
mation on the signal strength from a full likelihood fit to the data.
The likelihood function includes all the parameters that describe
the systematic uncertainties and their correlations.

Exclusion limits are based on the C Ls prescription [123]; a
value of µ is regarded as excluded at 95% CL when C Ls is less than
5%. A SM Higgs boson with mass mH is considered excluded at 95%
confidence level (CL) when µ = 1 is excluded at that mass. The sig-
nificance of an excess in the data is first quantified with the local
p0, the probability that the background can produce a fluctuation
greater than or equal to the excess observed in data. The equiva-
lent formulation in terms of number of standard deviations, Zl , is
referred to as the local significance. The global probability for the
most significant excess to be observed anywhere in a given search
region is estimated with the method described in Ref. [124]. The
ratio of the global to the local probabilities, the trials factor used
to correct for the “look elsewhere” effect, increases with the range
of Higgs boson mass hypotheses considered, the mass resolutions
of the channels involved in the combination, and the significance
of the excess.

The statistical tests are performed in steps of values of the
hypothesised Higgs boson mass mH . The asymptotic approxima-
tion [122] upon which the results are based has been validated
with the method described in Ref. [17].

The combination of individual search sub-channels for a specific
Higgs boson decay, and the full combination of all search chan-
nels, are based on the global signal strength factor µ and on the
identification of the nuisance parameters that correspond to the
correlated sources of systematic uncertainty described in Section 8.

8. Correlated systematic uncertainties

The individual search channels that enter the combination are
summarised in Table 6.

14 ATLAS Collaboration / Physics Letters B 716 (2012) 1–29

Table 7
Characterisation of the excess in the H → Z Z (∗) → 4ℓ, H → γ γ and H → W W (∗) → ℓνℓν channels and the combination of all channels listed in Table 6. The mass value
mmax for which the local significance is maximum, the maximum observed local significance Zl and the expected local significance E(Zl) in the presence of a SM Higgs
boson signal at mmax are given. The best fit value of the signal strength parameter µ̂ at mH = 126 GeV is shown with the total uncertainty. The expected and observed mass
ranges excluded at 95% CL (99% CL, indicated by a *) are also given, for the combined

√
s = 7 TeV and

√
s = 8 TeV data.

Search channel Dataset mmax [GeV] Zl [σ ] E(Zl) [σ ] µ̂(mH = 126 GeV) Expected exclusion [GeV] Observed exclusion [GeV]

H → Z Z (∗) → 4ℓ 7 TeV 125.0 2.5 1.6 1.4 ± 1.1
8 TeV 125.5 2.6 2.1 1.1 ± 0.8
7 & 8 TeV 125.0 3.6 2.7 1.2 ± 0.6 124–164, 176–500 131–162, 170–460

H → γ γ 7 TeV 126.0 3.4 1.6 2.2 ± 0.7
8 TeV 127.0 3.2 1.9 1.5 ± 0.6
7 & 8 TeV 126.5 4.5 2.5 1.8 ± 0.5 110–140 112–123, 132–143

H → W W (∗) → ℓνℓν 7 TeV 135.0 1.1 3.4 0.5 ± 0.6
8 TeV 120.0 3.3 1.0 1.9 ± 0.7
7 & 8 TeV 125.0 2.8 2.3 1.3 ± 0.5 124–233 137–261

Combined 7 TeV 126.5 3.6 3.2 1.2 ± 0.4
8 TeV 126.5 4.9 3.8 1.5 ± 0.4

7 & 8 TeV 126.5 6.0 4.9 1.4 ± 0.3
110–582 111–122, 131–559
113–532 (*) 113–114, 117–121, 132–527 (*)

uncertainties, evaluated as described in Ref. [138], reduces the lo-
cal significance to 5.9σ .

The global significance of a local 5.9σ excess anywhere in the
mass range 110–600 GeV is estimated to be approximately 5.1σ ,
increasing to 5.3 σ in the range 110–150 GeV, which is approxi-
mately the mass range not excluded at the 99% CL by the LHC com-
bined SM Higgs boson search [139] and the indirect constraints
from the global fit to precision electroweak measurements [12].

9.3. Characterising the excess

The mass of the observed new particle is estimated using the
profile likelihood ratio λ(mH ) for H → Z Z (∗) → 4ℓ and H → γ γ ,
the two channels with the highest mass resolution. The signal
strength is allowed to vary independently in the two channels,
although the result is essentially unchanged when restricted to
the SM hypothesis µ = 1. The leading sources of systematic un-
certainty come from the electron and photon energy scales and
resolutions. The resulting estimate for the mass of the observed
particle is 126.0 ± 0.4 (stat) ± 0.4 (sys) GeV.

The best-fit signal strength µ̂ is shown in Fig. 7(c) as a function
of mH . The observed excess corresponds to µ̂ = 1.4 ± 0.3 for mH =
126 GeV, which is consistent with the SM Higgs boson hypothesis
µ = 1. A summary of the individual and combined best-fit values
of the strength parameter for a SM Higgs boson mass hypothesis
of 126 GeV is shown in Fig. 10, while more information about the
three main channels is provided in Table 7.

In order to test which values of the strength and mass of a
signal hypothesis are simultaneously consistent with the data, the
profile likelihood ratio λ(µ,mH ) is used. In the presence of a
strong signal, it will produce closed contours around the best-fit
point (µ̂,m̂H ), while in the absence of a signal the contours will
be upper limits on µ for all values of mH .

Asymptotically, the test statistic −2 ln λ(µ,mH ) is distributed as
a χ2 distribution with two degrees of freedom. The resulting 68%
and 95% CL contours for the H → γ γ and H → W W (∗) → ℓνℓν
channels are shown in Fig. 11, where the asymptotic approxima-
tions have been validated with ensembles of pseudo-experiments.
Similar contours for the H → Z Z (∗) → 4ℓ channel are also shown
in Fig. 11, although they are only approximate confidence intervals
due to the smaller number of candidates in this channel. These
contours in the (µ,mH ) plane take into account uncertainties in
the energy scale and resolution.

The probability for a single Higgs boson-like particle to pro-
duce resonant mass peaks in the H → Z Z (∗) → 4ℓ and H → γ γ

Fig. 10. Measurements of the signal strength parameter µ for mH = 126 GeV for the
individual channels and their combination.

Fig. 11. Confidence intervals in the (µ,mH ) plane for the H → Z Z (∗) → 4ℓ, H →
γ γ , and H → W W (∗) → ℓνℓν channels, including all systematic uncertainties.
The markers indicate the maximum likelihood estimates (µ̂,m̂H ) in the corre-
sponding channels (the maximum likelihood estimates for H → Z Z (∗) → 4ℓ and
H → W W (∗) → ℓνℓν coincide).

channels separated by more than the observed mass difference, al-
lowing the signal strengths to vary independently, is about 8%.

The contributions from the different production modes in the
H → γ γ channel have been studied in order to assess any ten-
sion between the data and the ratios of the production cross

Figure 16: (left) The distribution of the transverse mass of the dilepton system and the missing
transverse momentum, mT, in the 0-jet and 1-jet channels of the H ! WW ⇤ !
eµ search for events satisfying all selection criteria (ATLAS Collaboration 2012b).
(right) Confidence intervals in the (µ, mH) plane for the H ! ��, H ! ZZ⇤ ! 4`,
and H ! WW ⇤ ! `⌫`⌫ channels, including all systematic uncertainties. The markers
indicate the maximum likelihood estimates.

TODO: Note the ATLAS and CMS combined Higgs mass measurement172:1574

mH = 125.09 ± 0.21 (stat.) ± 0.11 (syst.) GeV,

which implies a precision of better than 2 parts in 1000.1575

TODO: What is going on with the observation that the product of the Higgs branching1576

ratios is maximal near 125 GeV173.1577

TODO: Note that a minimal implementation of the Higgs mechanism is used in the1578

SM174.1579

4.3 What we can learn from the Higgs boson1580

TODO.1581
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95% CL

68% CL

Calculate the profile likelihood ratio:

data can be represented as one or more histograms. Using the method in an unbinned analysis
is a straightforward extension.

Suppose for each event in the signal sample one measures a variable x and uses these
values to construct a histogram n = (n1, . . . , nN ). The expectation value of ni can be written

E[ni] = µsi + bi , (2)

where the mean number of entries in the ith bin from signal and background are

si = stot

∫

bin i
fs(x;θs) dx , (3)

bi = btot

∫

bin i
fb(x;θb) dx . (4)

Here the parameter µ determines the strength of the signal process, with µ = 0 corresponding
to the background-only hypothesis and µ = 1 being the nominal signal hypothesis. The
functions fs(x;θs) and fb(x;θb) are the probability density functions (pdfs) of the variable
x for signal and background events, and θs and θb represent parameters that characterize
the shapes of pdfs. The quantities stot and btot are the total mean numbers of signal and
background events, and the integrals in (3) and (4) represent the probabilities for an event to
be found in bin i. Below we will use θ = (θs,θb, btot) to denote all of the nuisance parameters.
The signal normalization stot is not, however, an adjustable parameter but rather is fixed to
the value predicted by the nominal signal model.

In addition to the measured histogram n one often makes further subsidiary measurements
that help constrain the nuisance parameters. For example, one may select a control sample
where one expects mainly background events and from them construct a histogram of some
chosen kinematic variable. This then gives a set of values m = (m1, . . . ,mM ) for the number
of entries in each of the M bins. The expectation value of mi can be written

E[mi] = ui(θ) , (5)

where the ui are calculable quantities depending on the parameters θ. One often constructs
this measurement so as to provide information on the background normalization parameter
btot and also possibly on the signal and background shape parameters.

The likelihood function is the product of Poisson probabilities for all bins:

L(µ,θ) =
N
∏

j=1

(µsj + bj)nj

nj!
e−(µsj+bj)

M
∏

k=1

umk
k

mk!
e−uk . (6)

To test a hypothesized value of µ we consider the profile likelihood ratio

λ(µ) =
L(µ, ˆ̂θ)

L(µ̂, θ̂)
. (7)

Here ˆ̂
θ in the numerator denotes the value of θ that maximizes L for the specified µ, i.e.,

it is the conditional maximum-likelihood (ML) estimator of θ (and thus is a function of µ).

4

Similar to the Likelihood, but does not 
depend on the nuisance parameters.

“Profiling”

^ = Maximum Likelihood 
       Estimates  
^ = MLE for given µ^

�(µ)

�ln�(µ)

Maximum Likelihood Estimate

MLE
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Hypothesis testing

32

• Null hypothesis, H0: the SM

• Alternative hypothesis, H1:  
some new physics

• Type-I error:   
false positive rate (α)

• Type-II error:  
false negative rate (β)

• Power: 1-β
• Want to maximize power for a fixed false positive rate

• Particle physics has a tradition of claiming discovery at  
5σ ⇒ p0 = 2.9⨉10-7 = 1 in 3.5 million, and presents  
exclusion with p0 = 5%, (95% CL “coverage”).

• Neyman-Pearson lemma (1933):  
the most powerful test for fixed 
 α is the likelihood ratio:

Kyle Cranmer (NYU) CERN Academic Training, Feb 2-5, 2009 76

The Neyman-Pearson Lemma

The region W that minimizes the probability of wrongly accepting
the H0 is just a contour of the Likelihood Ratio:

L(x|H0)

L(x|H1)
> kα

This is the goal!

The problem is we don’t have access to L(x|H0) & L(x|H1)

April 11, 2005

EFI High Energy Physics Seminar

Modern Data Analysis Techniques

for High Energy Physics (page 7)

Kyle Cranmer

Brookhaven National Laboratory

The Neyman-Pearson Lemma

Prediction via Monte Carlo Simulation

The enormous detectors are still being constructed, but we have detailed
simulations of the detectors response.

L(x|H0) =
W

W

H
µ+

µ−

⊕

The advancements in theoretical predictions, detector simulation, tracking,
calorimetry, triggering, and computing set the bar high for equivalent
advances in our statistical treatment of the data.

September 13, 2005

PhyStat2005, Oxford
Statistical Challenges of the LHC (page 6) Kyle Cranmer

Brookhaven National Laboratory

Tuesday, February 3, 2009

Neyman



July 4, 2012 
CERN announces the discovery of a new particle by 
ATLAS and CMS, consistent with the Higgs boson

July 5 cover of the New York Times: 
“Physicists Find Elusive Particle Seen 
as Key to the Universe”

Fabiola Gianotti Joe Incandela
ATLAS and CMS spokespersons
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Nov 12-14, 2012 Eric Feng (ANL) -  Higgs Couplings 8

Higgs decay modes

 Scaled each decay mode j
by factor κ

j
2 = g

j
2

 
/g

j, SM
2

 Example:

~ κ
γ
2 = |1.28 κ

W
 – 0.28 κ

t
|2

    (loop coupling
     for photons)

~ κ
W,Z

2

     (tree-level
   couplings)

K. Nikolopoulos Nov 14th, 2012H→γγ and H→ZZ at ATLAS

Η→ZZ(*)→4l: Results of Event Selection

23

Signal ZZ(*) Other
Backgrounds

Observed

4µ 2.09±0.30 1.12±0.05 0.13±0.04 6

2µ2e/2e2µ 2.29±0.33 0.80±0.05 1.27±0.19 5

4e 0.90±0.14 0.44±0.04 1.09±0.20 2

for m4l  region with 125±5GeV

Expected S/B for mH=125 GeV
4µ ~1.6

2e2µ/2µ2e ~1.0
4e ~0.6

K. Nikolopoulos Nov 14th, 2012H→γγ and H→ZZ at ATLAS

Η→γγ: mγγ spectra

11

all categories

Higgs discovery

34

H→ɣɣ H→ZZ→4l

• Two channels with precise mass measurements: 
H→ɣɣ and H→ZZ→4l .

• H→WW observes a broad but clear excess.

channel bb ττ WW ZZ ɣɣ

BR 58% 6% 22% 3% 0.2%
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Figure 11: Confidence intervals in the (µ,mH) plane for the
H→ZZ(∗)→ 4ℓ, H→ γγ, and H→WW(∗)→ ℓνℓν channels, including
all systematic uncertainties. The markers indicate the maximum like-
lihood estimates (µ̂, m̂H ) in the corresponding channels (the maximum
likelihood estimates for H→ZZ(∗)→ 4ℓ and H→WW(∗)→ ℓνℓν coin-
cide).

by the common parameter µggF+tt̄H . Similarly, µVBF and
µVH have been grouped together as they scale with the
WWH/ZZH coupling in the SM, and are denoted by the
common parameter µVBF+VH . Since the distribution of
signal events among the 10 categories of the H→ γγ

search is sensitive to these factors, constraints in the
plane of µggF+tt̄H ×B/BSM and µVBF+VH ×B/BSM, where
B is the branching ratio for H→ γγ, can be obtained
(Fig. 12). Theoretical uncertainties are included so that
the consistency with the SM expectation can be quanti-
fied. The data are compatible with the SM expectation
at the 1.5σ level.

10. Conclusion

Searches for the Standard Model Higgs boson have
been performed in the H→ ZZ(∗)→ 4ℓ, H→ γγ and
H→WW (∗)→ eνµν channels with the ATLAS experi-
ment at the LHC using 5.8–5.9 fb−1 of pp collision data
recorded during April to June 2012 at a centre-of-mass
energy of 8 TeV. These results are combined with ear-
lier results [17], which are based on an integrated lu-
minosity of 4.6–4.8 fb−1 recorded in 2011 at a centre-
of-mass energy of 7 TeV, except for the H→ ZZ(∗)→ 4ℓ
and H→ γγ channels, which have been updated with the
improved analyses presented here.
The Standard Model Higgs boson is excluded at

95% CL in the mass range 111–559GeV, except for
the narrow region 122–131GeV. In this region, an ex-
cess of events with significance 5.9σ, corresponding
to p0 = 1.7 × 10−9, is observed. The excess is driven

SM B/B× 
ttHggF+

µ
-1 0 1 2 3 4 5

SM
 B

/B
× 

VH
VB

F+
µ

-2

0

2

4

6

8

10

γ γ →H 

ATLAS 2011 - 2012
-1Ldt = 4.8 fb∫ = 7 TeV:  s
-1Ldt = 5.9 fb∫ = 8 TeV:  s

SM
Best fit
68% CL
95% CL

Figure 12: Likelihood contours for the H→ γγ channel in the
(µggF+tt̄H , µVBF+VH ) plane including the branching ratio factor
B/BSM. The quantity µggF+tt̄H (µVBF+VH) is a common scale factor
for the ggF and tt̄H (VBF and VH) production cross sections. The
best fit to the data (+) and 68% (full) and 95% (dashed) CL contours
are also indicated, as well as the SM expectation (×).

by the two channels with the highest mass resolution,
H→ ZZ(∗)→ 4ℓ and H→ γγ, and the equally sensitive
but low-resolution H→WW (∗)→ ℓνℓν channel. Taking
into account the entire mass range of the search, 110–
600GeV, the global significance of the excess is 5.1σ,
which corresponds to p0 = 1.7 × 10−7.
These results provide conclusive evidence

for the discovery of a new particle with mass
126.0 ± 0.4 (stat) ± 0.4 (sys) GeV. The signal
strength parameter µ has the value 1.4 ± 0.3 at the
fitted mass, which is consistent with the SM Higgs
boson hypothesis µ = 1. The decays to pairs of vector
bosons whose net electric charge is zero identify the
new particle as a neutral boson. The observation in
the diphoton channel disfavours the spin-1 hypothe-
sis [140, 141]. Although these results are compatible
with the hypothesis that the new particle is the Standard
Model Higgs boson, more data are needed to assess its
nature in detail.
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• Local p0 = 1.7⨉10-9, corresponding to 5.9

Inconsistent with background only Consistent with SM Higgs

SM µ=1
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Figure 9: The distributions
f(qµ|0) (red) and f(qµ|µ) (blue)
from both the asymptotic formulae
and Monte Carlo histograms (see
text).

The vertical line in Fig. 9 gives the median value of qµ assuming a strength parameter
µ′ = 0. The area to the right of this line under the curve of f(qµ|µ) gives the p-value of
the hypothesized µ, as shown shaded in green. The upper limit on µ at a confidence level
CL = 1−α is the value of µ for which the p-value is pµ = α. Figure 9 shows the distributions
for the value of µ that gave pµ = 0.05, corresponding to the 95% CL upper limit.

In addition to reporting the median limit, one would like to know how much it would vary
for given statistical fluctuations in the data. This is illustrated in Fig. 10, which shows the
same distributions as in Figure 9, but here the vertical line indicates the 15.87% quantile of the
distribution f(qµ|0), corresponding to having µ̂ fluctuate downward one standard deviation
below its median.

0 5 10 15 20 25 30
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10−3

10−2

10−1

100

q
µ

15.87% quantile (median−1σ)

Figure 10: The distributions
f(qµ|0) (red) and f(qµ|µ) (blue) as
in Fig. 9 and the 15.87% quantile of
f(qµ|0) (see text).

By simulating the experiment many times with Monte Carlo, we can obtain a histogram
of the upper limits on µ at 95% CL, as shown in Fig. 11. The ±1σ (green) and ±2σ (yellow)
error bands are obtained from the MC experiments. The vertical lines indicate the error
bands as estimated directly (without Monte Carlo) using Eqs. (88) and (89). As can be seen
from the plot, the agreement between the formulae and MC predictions is excellent.

Figures 9 through 11 correspond to finding upper limit on µ for a specific value of the peak
position (mass). In a search for a signal of unknown mass, the procedure would be repeated
for all masses (in practice in small steps). Figure 12 shows the median upper limit at 95% CL
as a function of mass. The median (central blue line) and error bands (±1σ in green, ±2σ in
yellow) are obtained using Eqs. (88) and (89). The points and connecting curve correspond
to the upper limit from a single arbitrary Monte Carlo data set, generated according to the
background-only hypothesis. As can be seen, most of the plots lie as expected within the
±1σ error band.
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Statistical hypothesis tests (upper limits)

19[arxiv:1007.1727, 1502.07177]

qµ

f(qµ|µ = 0)
median qµ(µ = 0)

f(qµ|µ = µ95
up)

• Construct test statistic: 

• Analogous to a      dist., 
larger values of     
indicate greater 
incompatibility.

• Throw pseudo 
experiments to find        
which has a p-value of 5%.

• If this signal strength were 
there, only 5% of 
experiments would have 
higher qµ.  ⇒ 95% CL or 2σ

qµ = �2ln(�(µ))

�2

qµ

µ95
up

Sample the test statistic with pseudo experiments
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Figure 8. Bayesian 95% credibility upper limits on the cross section times ditau branching fraction
for a Z

0 in the Sequential Standard Model. The figure shows (left) an overlay of the observed (solid
lines with filled markers) and expected (dashed lines with empty markers) limits in each channel
and for the combination, and (right) the combined limit with 1� and 2� uncertainty bands and an
overlay of the impact of the Z
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models. The width of the Z

0
SSM

theory band represents the
theoretical uncertainty from the PDF error set, the choice of PDF as well as the strong coupling
constant.
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channels (blue). Indirect limits at 95% CL from fits
to electroweak precision measurements (EWPT) [27], lepton flavour violation (LFV) [28], CKM
unitarity [29] and the original Z-pole data [8] are overlaid.
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Figure 9: The distributions
f(qµ|0) (red) and f(qµ|µ) (blue)
from both the asymptotic formulae
and Monte Carlo histograms (see
text).

The vertical line in Fig. 9 gives the median value of qµ assuming a strength parameter
µ′ = 0. The area to the right of this line under the curve of f(qµ|µ) gives the p-value of
the hypothesized µ, as shown shaded in green. The upper limit on µ at a confidence level
CL = 1−α is the value of µ for which the p-value is pµ = α. Figure 9 shows the distributions
for the value of µ that gave pµ = 0.05, corresponding to the 95% CL upper limit.

In addition to reporting the median limit, one would like to know how much it would vary
for given statistical fluctuations in the data. This is illustrated in Fig. 10, which shows the
same distributions as in Figure 9, but here the vertical line indicates the 15.87% quantile of the
distribution f(qµ|0), corresponding to having µ̂ fluctuate downward one standard deviation
below its median.
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Figure 10: The distributions
f(qµ|0) (red) and f(qµ|µ) (blue) as
in Fig. 9 and the 15.87% quantile of
f(qµ|0) (see text).

By simulating the experiment many times with Monte Carlo, we can obtain a histogram
of the upper limits on µ at 95% CL, as shown in Fig. 11. The ±1σ (green) and ±2σ (yellow)
error bands are obtained from the MC experiments. The vertical lines indicate the error
bands as estimated directly (without Monte Carlo) using Eqs. (88) and (89). As can be seen
from the plot, the agreement between the formulae and MC predictions is excellent.

Figures 9 through 11 correspond to finding upper limit on µ for a specific value of the peak
position (mass). In a search for a signal of unknown mass, the procedure would be repeated
for all masses (in practice in small steps). Figure 12 shows the median upper limit at 95% CL
as a function of mass. The median (central blue line) and error bands (±1σ in green, ±2σ in
yellow) are obtained using Eqs. (88) and (89). The points and connecting curve correspond
to the upper limit from a single arbitrary Monte Carlo data set, generated according to the
background-only hypothesis. As can be seen, most of the plots lie as expected within the
±1σ error band.
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for a Z

0 in the Sequential Standard Model. The figure shows (left) an overlay of the observed (solid
lines with filled markers) and expected (dashed lines with empty markers) limits in each channel
and for the combination, and (right) the combined limit with 1� and 2� uncertainty bands and an
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Figure 9. Observed 95% CL exclusion in the non-universal G(221) parameter space from the
combination of the ⌧
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channels (blue). Indirect limits at 95% CL from fits
to electroweak precision measurements (EWPT) [27], lepton flavour violation (LFV) [28], CKM
unitarity [29] and the original Z-pole data [8] are overlaid.
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• Construct test statistic:  

• Wilks’ theorem: asymptotic 
to to a       distribution,  
larger values indicate greater 
incompatibility.

• Throw Monte Carlo pseudo   
experiments to find        
which has a p-value of 5%.

• If this signal strength were 
there, only 5% of 
experiments would have 
higher qµ.  ⇒ 95% CL or 2σ

Excluding instead of discovering
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Sample the test statistic with pseudo experiments
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Figure 9: The distributions
f(qµ|0) (red) and f(qµ|µ) (blue)
from both the asymptotic formulae
and Monte Carlo histograms (see
text).

The vertical line in Fig. 9 gives the median value of qµ assuming a strength parameter
µ′ = 0. The area to the right of this line under the curve of f(qµ|µ) gives the p-value of
the hypothesized µ, as shown shaded in green. The upper limit on µ at a confidence level
CL = 1−α is the value of µ for which the p-value is pµ = α. Figure 9 shows the distributions
for the value of µ that gave pµ = 0.05, corresponding to the 95% CL upper limit.

In addition to reporting the median limit, one would like to know how much it would vary
for given statistical fluctuations in the data. This is illustrated in Fig. 10, which shows the
same distributions as in Figure 9, but here the vertical line indicates the 15.87% quantile of the
distribution f(qµ|0), corresponding to having µ̂ fluctuate downward one standard deviation
below its median.
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Figure 10: The distributions
f(qµ|0) (red) and f(qµ|µ) (blue) as
in Fig. 9 and the 15.87% quantile of
f(qµ|0) (see text).

By simulating the experiment many times with Monte Carlo, we can obtain a histogram
of the upper limits on µ at 95% CL, as shown in Fig. 11. The ±1σ (green) and ±2σ (yellow)
error bands are obtained from the MC experiments. The vertical lines indicate the error
bands as estimated directly (without Monte Carlo) using Eqs. (88) and (89). As can be seen
from the plot, the agreement between the formulae and MC predictions is excellent.

Figures 9 through 11 correspond to finding upper limit on µ for a specific value of the peak
position (mass). In a search for a signal of unknown mass, the procedure would be repeated
for all masses (in practice in small steps). Figure 12 shows the median upper limit at 95% CL
as a function of mass. The median (central blue line) and error bands (±1σ in green, ±2σ in
yellow) are obtained using Eqs. (88) and (89). The points and connecting curve correspond
to the upper limit from a single arbitrary Monte Carlo data set, generated according to the
background-only hypothesis. As can be seen, most of the plots lie as expected within the
±1σ error band.

28

Statistical hypothesis tests (upper limits)

19[arxiv:1007.1727, 1502.07177]

qµ

f(qµ|µ = 0)
median qµ(µ = 0)

f(qµ|µ = µ95
up)

• Construct test statistic: 

• Analogous to a      dist., 
larger values of     
indicate greater 
incompatibility.

• Throw pseudo 
experiments to find        
which has a p-value of 5%.

• If this signal strength were 
there, only 5% of 
experiments would have 
higher qµ.  ⇒ 95% CL or 2σ

qµ = �2ln(�(µ))

�2

qµ

µ95
up

Sample the test statistic with pseudo experiments

 [GeV]Z'm
500 1000 1500 2000 2500

) [
pb

]
ττ

→
Z'(

B ×
 +

 X
) 

Z'
→

pp(
σ

-310

-210

-110

1
ATLAS -1 = 8 TeV, 19.5 - 20.3 fbs

95% credibility limits

Observed limits
Expected limits

SSMZ'

hadτlepτ hadτhadτ Comb.

 [GeV]Z'm
500 1000 1500 2000 2500

) [
pb

]
ττ

→
Z'(

B ×
 +

 X
) 

Z'
→

pp(
σ

-310

-210

-110

1
ATLAS -1 = 8 TeV, 19.5 - 20.3 fbs

 combinedhadτlepτ + hadτhadτ

95% credibility limits

Expected limit
σ 1±Expected 
σ 2±Expected 

Observed limit
LZ'Observed 
RZ'Observed 

SSMZ'

Figure 8. Bayesian 95% credibility upper limits on the cross section times ditau branching fraction
for a Z

0 in the Sequential Standard Model. The figure shows (left) an overlay of the observed (solid
lines with filled markers) and expected (dashed lines with empty markers) limits in each channel
and for the combination, and (right) the combined limit with 1� and 2� uncertainty bands and an
overlay of the impact of the Z

0
L

/Z 0
R

models. The width of the Z

0
SSM

theory band represents the
theoretical uncertainty from the PDF error set, the choice of PDF as well as the strong coupling
constant.

φ2sin

0.1 0.2 0.3 0.4 0.5

 [G
eV

]
Z'

m

1000

2000

3000 ATLAS -1 = 8 TeV, 19.5 - 20.3 fbs

(221) modelGNon-universal 

95% CL limits searchττATLAS 
Indirect (EWPT)
Indirect (LFV)
Indirect (CKM)

-pole)ZIndirect (

Figure 9. Observed 95% CL exclusion in the non-universal G(221) parameter space from the
combination of the ⌧

had

⌧

had

and ⌧

lep

⌧

had

channels (blue). Indirect limits at 95% CL from fits
to electroweak precision measurements (EWPT) [27], lepton flavour violation (LFV) [28], CKM
unitarity [29] and the original Z-pole data [8] are overlaid.
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Figure 9: The distributions
f(qµ|0) (red) and f(qµ|µ) (blue)
from both the asymptotic formulae
and Monte Carlo histograms (see
text).

The vertical line in Fig. 9 gives the median value of qµ assuming a strength parameter
µ′ = 0. The area to the right of this line under the curve of f(qµ|µ) gives the p-value of
the hypothesized µ, as shown shaded in green. The upper limit on µ at a confidence level
CL = 1−α is the value of µ for which the p-value is pµ = α. Figure 9 shows the distributions
for the value of µ that gave pµ = 0.05, corresponding to the 95% CL upper limit.

In addition to reporting the median limit, one would like to know how much it would vary
for given statistical fluctuations in the data. This is illustrated in Fig. 10, which shows the
same distributions as in Figure 9, but here the vertical line indicates the 15.87% quantile of the
distribution f(qµ|0), corresponding to having µ̂ fluctuate downward one standard deviation
below its median.
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Figure 10: The distributions
f(qµ|0) (red) and f(qµ|µ) (blue) as
in Fig. 9 and the 15.87% quantile of
f(qµ|0) (see text).

By simulating the experiment many times with Monte Carlo, we can obtain a histogram
of the upper limits on µ at 95% CL, as shown in Fig. 11. The ±1σ (green) and ±2σ (yellow)
error bands are obtained from the MC experiments. The vertical lines indicate the error
bands as estimated directly (without Monte Carlo) using Eqs. (88) and (89). As can be seen
from the plot, the agreement between the formulae and MC predictions is excellent.

Figures 9 through 11 correspond to finding upper limit on µ for a specific value of the peak
position (mass). In a search for a signal of unknown mass, the procedure would be repeated
for all masses (in practice in small steps). Figure 12 shows the median upper limit at 95% CL
as a function of mass. The median (central blue line) and error bands (±1σ in green, ±2σ in
yellow) are obtained using Eqs. (88) and (89). The points and connecting curve correspond
to the upper limit from a single arbitrary Monte Carlo data set, generated according to the
background-only hypothesis. As can be seen, most of the plots lie as expected within the
±1σ error band.
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The vertical line in Fig. 9 gives the median value of qµ assuming a strength parameter
µ′ = 0. The area to the right of this line under the curve of f(qµ|µ) gives the p-value of
the hypothesized µ, as shown shaded in green. The upper limit on µ at a confidence level
CL = 1−α is the value of µ for which the p-value is pµ = α. Figure 9 shows the distributions
for the value of µ that gave pµ = 0.05, corresponding to the 95% CL upper limit.

In addition to reporting the median limit, one would like to know how much it would vary
for given statistical fluctuations in the data. This is illustrated in Fig. 10, which shows the
same distributions as in Figure 9, but here the vertical line indicates the 15.87% quantile of the
distribution f(qµ|0), corresponding to having µ̂ fluctuate downward one standard deviation
below its median.
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By simulating the experiment many times with Monte Carlo, we can obtain a histogram
of the upper limits on µ at 95% CL, as shown in Fig. 11. The ±1σ (green) and ±2σ (yellow)
error bands are obtained from the MC experiments. The vertical lines indicate the error
bands as estimated directly (without Monte Carlo) using Eqs. (88) and (89). As can be seen
from the plot, the agreement between the formulae and MC predictions is excellent.

Figures 9 through 11 correspond to finding upper limit on µ for a specific value of the peak
position (mass). In a search for a signal of unknown mass, the procedure would be repeated
for all masses (in practice in small steps). Figure 12 shows the median upper limit at 95% CL
as a function of mass. The median (central blue line) and error bands (±1σ in green, ±2σ in
yellow) are obtained using Eqs. (88) and (89). The points and connecting curve correspond
to the upper limit from a single arbitrary Monte Carlo data set, generated according to the
background-only hypothesis. As can be seen, most of the plots lie as expected within the
±1σ error band.
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0
1→eeν/eµν/µµν displ. ee/eµ/µµ - - 20.3 7 <cτ(χ̃

0
1)< 740 mm, m(g̃)=1.3 TeV 1504.051621.0 TeVχ̃0

1

GGM g̃g̃, χ̃
0
1→ZG̃ displ. vtx + jets - - 20.3 6 <cτ(χ̃

0
1)< 480 mm, m(g̃)=1.1 TeV 1504.051621.0 TeVχ̃0

1

LFV pp→ν̃τ + X, ν̃τ→eµ/eτ/µτ eµ,eτ,µτ - - 3.2 λ′311=0.11, λ132/133/233=0.07 1607.080791.9 TeVν̃τ

Bilinear RPV CMSSM 2 e, µ (SS) 0-3 b Yes 20.3 m(q̃)=m(g̃), cτLS P<1 mm 1404.25001.45 TeVq̃, g̃

χ̃+
1
χ̃−

1 , χ̃
+

1→Wχ̃
0
1, χ̃

0
1→eeν, eµν, µµν 4 e, µ - Yes 13.3 m(χ̃

0
1)>400GeV, λ12k!0 (k = 1, 2) ATLAS-CONF-2016-0751.14 TeVχ̃±

1

χ̃+
1
χ̃−

1 , χ̃
+

1→Wχ̃
0
1, χ̃

0
1→ττνe, eτντ 3 e, µ + τ - Yes 20.3 m(χ̃

0
1)>0.2×m(χ̃

±
1 ), λ133!0 1405.5086450 GeVχ̃±

1

g̃g̃, g̃→qqq 0 4-5 large-R jets - 14.8 BR(t)=BR(b)=BR(c)=0% ATLAS-CONF-2016-0571.08 TeVg̃

g̃g̃, g̃→qqχ̃
0
1, χ̃

0
1 → qqq 0 4-5 large-R jets - 14.8 m(χ̃

0
1)=800 GeV ATLAS-CONF-2016-0571.55 TeVg̃

g̃g̃, g̃→tt̄χ̃
0
1, χ̃

0
1 → qqq 1 e, µ 8-10 jets/0-4 b - 14.8 m(χ̃

0
1)=700 GeV ATLAS-CONF-2016-0941.75 TeVg̃

g̃g̃, g̃→t̃1t, t̃1→bs 1 e, µ 8-10 jets/0-4 b - 14.8 625 GeV<m(t̃1)<850 GeV ATLAS-CONF-2016-0941.4 TeVg̃

t̃1 t̃1, t̃1→bs 0 2 jets + 2 b - 15.4 ATLAS-CONF-2016-022, ATLAS-CONF-2016-084410 GeVt̃1 450-510 GeVt̃1

t̃1 t̃1, t̃1→bℓ 2 e, µ 2 b - 20.3 BR(t̃1→be/µ)>20% ATLAS-CONF-2015-0150.4-1.0 TeVt̃1

Scalar charm, c̃→cχ̃
0
1 0 2 c Yes 20.3 m(χ̃

0
1)<200 GeV 1501.01325510 GeVc̃

Mass scale [TeV]10−1 1

√
s = 7, 8 TeV

√
s = 13 TeV

ATLAS SUSY Searches* - 95% CL Lower Limits
Status: August 2016

ATLAS Preliminary
√

s = 7, 8, 13 TeV

*Only a selection of the available mass limits on new
states or phenomena is shown.
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Fig. 9. Reconstructed dielectron mass distribution for J/ψ → ee decays, as measured after applying the baseline Z → ee
calibration. The data (full circles with statistical error bars) are compared to the sum of the MC signal (light filled histogram)
and the background contribution (darker filled histogram) modelled by a Chebyshev polynomial. The mean (µ) and the Gaussian
width (σ) of the fitted Crystal Ball function are given both for data and MC.

Table 4. Measured effective constant term cdata (see Eq. 6) from the observed width of the Z → ee peak for different calorimeter
η regions.

Sub-system η-range Effective constant term, cdata

EMB |η| < 1.37 1.2% ± 0.1% (stat) + 0.5%
− 0.6% (syst)

EMEC-OW 1.52 < |η| < 2.47 1.8% ± 0.4% (stat) ± 0.4% (syst)
EMEC-IW 2.5 < |η| < 3.2 3.3% ± 0.2% (stat) ± 1.1% (syst)
FCal 3.2 < |η| < 4.9 2.5% ± 0.4% (stat) + 1.0%

− 1.5% (syst)

The results obtained for the effective constant term
are shown in Table 4. Several sources of systematic uncer-
tainties are investigated. The dominant uncertainty is due
to the uncertainty on the sampling term, as the constant
term was extracted assuming that the sampling term is
correctly reproduced by the simulation. To assign a sys-
tematic uncertainty due to this assumption, the simulation
was modified by increasing the sampling term by 10%. The
difference in the measured constant term is found to be
about 0.4% for the EM calorimeter and 1% for the forward
calorimeter. The uncertainty due to the fit procedure was
estimated by varying the fit range. The uncertainty due
to pile-up was investigated by comparing simulated MC
samples with and without pile-up and was found to be
negligible.

6 Efficiency measurements

In this section, the measurements of electron selection effi-
ciencies are presented using the tag-and-probe method [31,
32]. Z → ee events provide a clean environment to study
all components of the electron selection efficiency dis-
cussed in this paper. In certain cases, such as identification
or trigger efficiency measurements, the statistical power
of the results is improved using W → eν decays, as well.
To extend the reach towards lower transverse energies,

J/ψ → ee decays are also used to measure the electron
identification efficiency. However the available statistics
of J/ψ → ee events after the trigger requirements in the
2010 data sample are limited and do not allow a precise
separation of the isolated signal component from b-hadron
decays and from background processes.

6.1 Methodology

A measured electron spectrum needs to be corrected for
efficiencies related to the electron selection in order to de-
rive cross-sections of observed physics processes or limits
on new physics. This correction factor is defined as the
product of different efficiency terms. For the case of a sin-
gle electron in the final state one can write:

C = ϵevent · αreco · ϵID · ϵtrig · ϵisol. (7)

Here ϵevent denotes the efficiency of the event preselec-
tion cuts, such as primary vertex requirements and event
cleaning. αreco accounts for the basic reconstruction ef-
ficiency to find an electromagnetic cluster and to match
it loosely to a reconstructed charged particle track in the
fiducial region of the detector and also for any kinematic
and geometrical cuts on the reconstructed object itself.
ϵID denotes the efficiency of the identification cuts rela-
tive to reconstructed electron objects. ϵtrig stands for the
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J/ψ→e+e-  
candidate event

ele
ctr
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⇒J/ψ   m = 3.2 GeV

e-

e+

Real Patterns
• An excitation in a Dirac spinor 

field representation of 
SU(2)xU(1), the “Platonic electron”.

• A software object with a 
reconstructed track and 
calorimeter deposit, passing some 
selection cuts, the “pragmatist 
electron”.

• A set of voltages and timings 
read-out from the detector,  
the “Ramsified electron”.

➡Reality has a hierarchy of onion 
layers, but it has real patterns 
(Dennett 1991).

What is an electron?

J/ψ
background
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several particles is collected in a single pixel. This problem occurs more and more often as the
spatial separation between the particles on the sensor plane approaches the pixel size. This cluster
merging is depicted in figure 3, which illustrates an event in which the charge induced by three
particles is reconstructed as a single cluster.

Figure 4 shows the average separation in the transverse (hd min
x i) and longitudinal (hd min

y i)
direction of the two closest stable charged particles in jets, at the radius of the innermost pixel
layer in the barrel. Only track pairs separated by less than a pixel in the longitudinal (transverse)
direction are shown here for the transverse (longitudinal) direction. A sample of simulated dijet
events based on the PYTHIA [10] Monte Carlo generator with the leading jet pT greater than
800 GeV was used. Jets were reconstructed from stable generator-level particles using an anti–kt

jet algorithm [11] with a cone size of 0.4. The figure illustrates that shared measurements appear
already in jets with relatively moderate momentum as cluster merging starts before the pixel size
is reached. In the worst case, when cluster merging appears in pixel layers beyond the innermost
and the number of shared measurements on a track exceeds the given threshold, the track candidate
is completely disregarded to avoid the creation of duplicate tracks. This leads to an inefficiency
in finding both tracks. The limit where two close–by tracks can still be reconstructed separately
is often referred to as double–track resolution. With the CCA clustering, no attempt is made to
identify or split these merged clusters.

Figure 3. Illustration of charge deposited by multiple particles in the dense core of a jet in a layer of the
pixel detector. The pixel size is not drawn to scale. The arrows indicate the passage of charged particles
through the pixel sensor. The pixels are shaded according to which particle deposited charge in them. The
dashed lines indicate the path traversed by the particles in the silicon and the solid line shows the single
cluster obtained by the eight-cell CCA.
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Figure 7. The cluster residual in the local x direction for clusters with a width of three (left) or four pix-
els (right) in the x–direction reconstructed with the CCA clustering algorithm (dashed line) and the NN
clustering algorithm (solid line).

on the local charged–particle density, Lorentz drift and the incident angles of the traversing parti-
cles; effects from charge collection and channel cross-talk are negligible. Clusters in the barrel and
endcap are thus treated similarly, but with the detector region given as input to the NN, so cluster
classification is performed based on cluster sizes.

Figure 8 compares the root mean square (RMS) of the measurement residuals for the CCA
clustering and the NN clustering algorithm in data and simulation in the transverse and longi-
tudinal direction in the different cluster categories. The majority of three– and four–pixel wide
clusters in the transverse direction are due to close–by particles and d–rays. In the longitudinal
direction, clusters of this size are geometrically possible due to the shallower incidence angle. The
improvement shown in figure 8(left) can thus be mostly attributed to actual cluster splitting, which
includes splitting components from d -rays, while in figure 8(right) a sizeable contribution of the
improvement is caused by the non–linear charge interpolation of the NN clustering algorithm. Dis-
crepancies between data and Monte Carlo simulation can arise from imperfections of the detector
such as module misalignment or deformations that are not present in the simulated model of the
detector geometry, as well as from limitations in the detector simulation and digitisation model
that include several complex components as described in section 3.2. Discrepancies are seen in
figure 8 for the longitudinal direction. This is most likely due to limitations in the modelling of the
longitudinal charge sharing. Nonetheless, the relative improvement obtained by the NN clustering
algorithm compared to the CCA clustering algorithm is largely consistent between data and Monte
Carlo simulations.

The improvement coming from the non–linear charge interpolation and d–ray handling in the
NN clustering can be checked on isolated tracks as there are no other close–by particles from the
beam collision. Pairs of oppositely charged combined muons with pT > 25 GeV, which produce a
Z boson candidate with a mass mµµ > 50 GeV were selected. A combined muon is a muon recon-
structed using information from both the inner detector and the muon spectrometer. The impact
parameter resolution with respect to the primary vertex in data is shown in figure 9. Only the inner
detector component of the combined track is taken to extract the impact parameter distribution, and

– 14 –

[1406.7690]

Neural Networks

41

• Inspired by the biological cortex

• Can be used for classification or 
regression with many input variables.

• Using NNs and other MVAs has 
been common in HEP for years, for 
pattern recognition, particle ID, 
event selection...

• In the past, always used shallow NNs.

• ATLAS uses NNs in many places, e.g. 
pixel clustering.

• Jet tagging for taus and b-quarks has 
used NNs in many iterations.

ATLAS pixel clustering with NNs
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Examples of CNNs
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2 L. Pigou, S. Dieleman, P. Kindermans, B. Schrauwen

2 Related Work

In our work, we build on the results of Roel Verschaeren [18]. He proposes a CNN
model that recognizes a set of 50 di↵erent signs in the Flemish Sign Language
with an error of 2.5%, using the Microsoft Kinect. Unfortunately, this work is
limited in the sense that it considers only a single person in a fixed environment.

In [19] an American Language recognition system is presented with a vo-
cabulary of 30 words. They constructed appearance-based representations and a
hand tracking system to be classified with a hidden Markov model (HMM). An
error rate of 10.91% is achieved on the RWTH-BOSTON-50 database.

The approach in [4] uses the Microsoft Kinect to extract appearance-based
hand features and track the position in 2D and 3D. The classification results are
obtained by comparing a hidden Markov model (HMM) approach with sequential
pattern boosting (SP-boosting). This resulted in an accuracy of 99.9% on 20
di↵erent isolated gestures on their specifically constructed data set and 85.1%
on a more realistic one with 40 gestures.

The Microsoft Kinect is also used in [2] that proposes a recognition system
for 239 words of the Chinese Sign Language (CSL). Here, the 3D movement
trajectory of the hands are used besides a language model to construct sentences.
This trajectory is aligned and matched with a gallery of known trajectories. The
top-1 and top-5 recognition rates are 83.51% and 96.32% respectively.

(a) RGB (b) Depth map (c) User index (d) Skeleton

Fig. 1. Data set for the CLAP14 gesture spotting challenge [5].

3 Methodology

3.1 Data

We use the data set from the ChaLearn Looking at People 2014 [5] (CLAP14)
challenge in this work. More specifically, Track 3: Gesture Spotting. This dataset
consists of 20 di↵erent Italian gestures, performed by 27 users with variations in
surroundings, clothing, lighting and gesture movement. The videos are recorded
with a Microsoft Kinect. As a result, we have access to the depth map, user
index (location of the user in the depth map) and the joint positions (Figure 1).

Pigou et al. (2014). Sign Language Recognition 
using Convolutional Neural Networks.

4 L. Pigou, S. Dieleman, P. Kindermans, B. Schrauwen

channel, and together with the activation functions of the neurons, they form
feature maps. This is followed by a pooling scheme, where only the interest-
ing information of the feature maps are pooled together. These techniques are
performed in multiple layers as shown in Figure 3.

3.4 Proposed Architecture

For the pooling method, we use max-pooling: only the maximum value in a local
neighborhood of the feature map remains. To accommodate video data, the
max-pooling is performed in three dimensions. However, using 2D convolutions
resulted in a better validation accuracy than 3D convolutions.

The architecture of the model consists of two CNNs, one for extracting hand
features and one for extracting upper body features. Each CNN is three layers
deep. A classical ANN with one hidden layer provides classification after concate-
nating the outcomes of both CNNs. Also, local contrast normalization (LCN)
as in [10] is applied in the first two layers and all artificial neurons are rectified
linear units (ReLUs [14], [6]). An illustration of the architecture is depicted in
Figure 3.
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Fig. 3. The architecture of the convolutional neural network. This illustration only
shows one of the two identical CNNs.

3.5 Generalization and Training

During training, dropout [9] and data augmentation are used as main approaches
to reduce overfitting. The data augmentation is performed in real time on the
CPU during the training phase whiles the model trains on the GPU as in [12].
This consists of zooming up to 10%, rotations up to (-)3�, spatial translations
up to (-)5 pixels in the x and y direction, and temporal translations up to (-)4
frames.

We use Nesterov’s accelerated gradient descent (NAG) [16] with a fixed
momentum-coe�cient of 0.9 and mini-batches of size 20. The learning rate is ini-
tialized at 0.003 with a 5% decrease after each epoch. The weights of the CNNs

• In 1990s, Yann LeCun pioneered 
Convolutional Neural Nets (CNN) 
and used them for Optical Character 
Recognition.

• Now it is standard in image 
recognition and captioning, NLP, 
computer vision, etc.
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Why go deep?
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[Forbes/Google]

• Multiple layers allow for 
feature extraction.

• “Vanishing gradient 
problem” → hard to train 
many layers.

• Now in “Deep Learning 
Renaissance”

1. Better training: techniques and tools (e.g. smarter NN structures).

2. Better hardware: multicore, GPUs, bigger data centers, cloud 
computing, coming: neuromorphic computing.

3. More training: bigger datasets, search, the internet, open science.
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Deep learning future?
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Google ImageNet 
competition example µ

τ-jet

jet

jet

DNN future of ATLAS?
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Natural Kinds?
• Seems like the possible uniqueness of the latent space representations 

(the features discovered by DNNs) says something interesting about 
the issue of natural kinds, how to carve nature at its joints.
‣ Opposite sentiments shared by:  

Bensusan, H. (Sussex) (2014).  What can inductive machines suggest about the   
      realism debate?  
Hennig, C. (UCL) (2015).  What are the true clusters?

• What do results in machine translation 
say about arguments for the  
inscrutability of reference?
‣ “Zero-Shot Translation with Google’s  

Multilingual Neural Machine Translation  
System” https://research.googleblog.com/2016/11/zero-shot-translation-with-googles.html

• I doubt one could rename-away the Higgs field, for example, being the 
only scalar field in the Standard Model. 
‣ My thoughts after reading: Button and Walsh. (2015).  “Ideas and Results in Model Theory: 

Reference, Realism, Structure and Categoricity”. arxiv:1501.00472.
45
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Summary
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• Particle physics probes very deep questions about what the world is made of, how 
it works, and how it got here.

• QFT is arguably the most impressive reductionist framework in science.

• Unlike previous eras of parts of physics seeming “near complete”, QFT should be 
viewed as an Effective Field Theory. 

• Experimental particle physics has consistently pushed the bounds of computing, and 
lead the big-data explosion until the 2000s.

• Physicists have learned to statistically justify their claims, and have often lead in 
developing statistical theory and methods.

• There are arguably Natural Kind characterizations of the degrees of freedom in 
nature, non-arbitrary choices in modeling the data.

• Realist cases can be made for the Standard Model, atoms, genes etc. despite what 
theory changes come in other regimes (structural realism, rainforest realism, 
Ladyman & Ross (2007) Every Thing Must Go).

• Discoveries in particle physics have the potential to explain the existence of dark 
matter and reveal details about the early universe. 

• Machine learning is revolutionizing how induction can be automized. What does ML 
say about the realism debate?



Back up 
slides



Ryan Reece (UCSC)

Deep Learning in HEP
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Baldi et al. (2014). Searching for Exotic Particles  
in High-Energy Physics with Deep Learning.

Baldi et al. (2015). Enhanced Higgs to τ+τ−  
Search with Deep Learning.

X-view Y-view
(a) ⌫µ CC interaction.

X-view Y-view
(b) ⌫e CC interaction.

X-view Y-view
(c) NC interaction.

Figure 5. Example CNN image input
Input given to the CNN for an example ⌫µ CC interaction (top), ⌫e CC interaction (middle), and ⌫
NC interaction (bottom). Hits in the X view of the NOvA detector are shown on the left, and hits
in the Y view are shown on the right.
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Figure 5. Example CNN image input
Input given to the CNN for an example ⌫µ CC interaction (top), ⌫e CC interaction (middle), and ⌫
NC interaction (bottom). Hits in the X view of the NOvA detector are shown on the left, and hits
in the Y view are shown on the right.
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Figure 5. Example CNN image input
Input given to the CNN for an example ⌫µ CC interaction (top), ⌫e CC interaction (middle), and ⌫
NC interaction (bottom). Hits in the X view of the NOvA detector are shown on the left, and hits
in the Y view are shown on the right.
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Figure 5. Example CNN image input
Input given to the CNN for an example ⌫µ CC interaction (top), ⌫e CC interaction (middle), and ⌫
NC interaction (bottom). Hits in the X view of the NOvA detector are shown on the left, and hits
in the Y view are shown on the right.
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[1402.4735]

[1410.3469]

Aurisano et al. (2016).  A Convolutional Neural  
Network Neutrino Event Classifier.

out performs NOvA’s conventional reconstruction

[1604.01444]

• Deep learning does best 
with raw data and when 
there are unexploited 
features.

• raw channels→tagging

• basic kinematics→features

methods using ROC curves is shown in Figure 8.
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FIG. 8. ROC curves from di↵erent classifiers.

For each ML technique under study, an optimized requirement is placed on the value of the

output discriminant by choosing the cut such that it gives the largest value of Sp
B
. Table II

shows a comparison of these optimized cuts and this figure of merit. It also shows the relative

increase in the amount of data that would be needed by each algorithm to achieve the same

(statistical-only) sensitivity as the best performing algorithm. Since statistical sensitivity

goes as the square root of the amount of data, small increases in Sp
B
can still indicate large

improvements in performance, and be quite important for experiments that can take years,

if not decades, to accumulate data sets of su�cient size for discovery. For example, the

second-best network structure needs almost 8% more data to achieve the same performance

as the leading structure, and using only extended features and not just all features would

require at least 15% more data. The use of basic features requires almost 50% more data. In

addition, the worse performance of algorithms such as decision trees and random forest can

clearly be seen. The optimal network (using as many inputs as possible) from NeuroBayes

requires 23% more data to achieve the same sensitivity as the leading NeuroBGD structure.

To understand the full shape of neural network output, Figure 9 depicts the outputs of

NeuroBGD model of both signal and background. Figure 10 shows the output distributions

for the NeuroBayes discriminant. The structure seen is related to the b-tagging, with clear

13

Santos et al. (2016). Machine learning 
techniques in searches for tth in the 
h→bb decay channel. [1610.03088]



Ryan Reece (UCSC)

Naturalness or multiverse?
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“If the LHC finds Higgs couplings 
deviating from the SM prediction 
and new degrees of freedom at 
the TeV scale, then the most  
important question will be to  
see if a consistent and natural  
(in the technical sense) explanation of EW breaking emerges from 
experimental data.  But if the LHC discovers that the Higgs boson is not 
accompanied by any new physics, then it will be much harder for theorists to 
unveil the underlying organizing principles of nature.  The multiverse, although 
being a stimulating physical concept, is discouragingly difficult to test from an 
empirical point of view.  The measurement of the Higgs mass may provide a 
precious handle to gather some indirect information.”

[arxiv: 1205.6497]

CERN-PH-TH/2012–134

RM3-TH/12-9

Higgs mass and vacuum stability
in the Standard Model at NNLO

Giuseppe Degrassia, Stefano Di Vitaa, Joan Elias-Mirób, José R. Espinosab,c,

Gian F. Giudiced, Gino Isidorid,e, Alessandro Strumiag,h
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(h) National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

Abstract

We present the first complete next-to-next-to-leading order analysis
of the Standard Model Higgs potential. We computed the two-loop
QCD and Yukawa corrections to the relation between the Higgs
quartic coupling (�) and the Higgs mass (Mh), reducing the theo-
retical uncertainty in the determination of the critical value of Mh

for vacuum stability to 1 GeV. While � at the Planck scale is re-
markably close to zero, absolute stability of the Higgs potential is
excluded at 98% C.L. for Mh < 126GeV. Possible consequences of
the near vanishing of � at the Planck scale, including speculations
about the role of the Higgs field during inflation, are discussed.
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was a theorem of QFT the following year with Abdus Salam and Steven Weinberg82.1020

TODO: The mechanism was proposed in 1962 by Philip Anderson, inspired by Schwinger83.1021

In 1964, three groups: Robert Brout and Francois Englert84; Peter Higgs85; and Gerald1022

Guralnik, Carl R. Hagen, and Tom Kibble86, independently demonstrated an exception to1023

Goldstone’s theorem, showing that Goldstone bosons do not occur when a spontaneously1024

broken symmetry is local. Instead, the Goldstone mode provides the third polarization of1025

a massive vector field, resulting in massive gauge bosons. The other mode of the original1026

scalar doublet remains as a massive spin-zero particle, the Higgs boson. This is the Englert-1027

Brout-Higgs-Guralnik-Hagen-Kibble mechanism, or Higgs mechanism. In the SM, the Higgs1028

boson also couples to the fermions, generating their bare masses, as discussed briefly later1029

in Section 3.6 and 3.7.1030

Electroweak symmetry breaking in the SM1031

The Higgs mechanism is utilized in the unified model of the electroweak interactions of1032

Sheldon Glashow87, Steven Weinberg88, and Abdus Salam89, that forms the modern basis1033

of the Standard Model. As implemented in the SM, the Higgs mechanism couples the1034

SU(2)L and the U(1)Y parts of the gauge symmetry through a Higgs field that is a complex1035

scalar invariant under U(1)Y and an SU(2)L doublet:1036

� ⌘
 

�+

�0

!
: ( 1,2,

1

2
) ,

where both �+ and �0 are complex numbers. The potential of the Higgs field is expanded1037

as1038

V (�) = µ2 �† � + �
����† �

���
2

.

To spontaneously break the symmetry, the potential V (�) is chosen to have an unstable1039

maximum at � = 0 by requiring that µ2 < 0 (see Figure 4). Finding the minimum of the1040

potential:1041

µ2 + 2 � �†�
���
min

= 0

gives degenerate minima with1042

�† � = |�|2 = |�+|2 + |�0|2 =
�µ2

2 �
.

82 Goldstone et al. (1962).
83 Schwinger (1962). Anderson (1963).
84 Englert and Brout (1964).
85 Higgs (1964b,a).
86 Guralnik et al. (1964).
87 Glashow (1961).
88 Weinberg (1967).
89 Salam and Ward (1964b,a); Salam (1968).
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Figure 5: Regions of absolute stability, meta-stability and instability of the SM vacuum in the Mt–
Mh plane. Right: Zoom in the region of the preferred experimental range of Mh and Mt (the
gray areas denote the allowed region at 1, 2, and 3�). The three boundaries lines correspond to
↵s(MZ) = 0.1184 ± 0.0007, and the grading of the colors indicates the size of the theoretical error.
The dotted contour-lines show the instability scale ⇤ in GeV assuming ↵s(MZ) = 0.1184.

3.3 Phase diagram of the SM

The final result for the condition of absolute stability is presented in eq. (2). The central

value of the stability bound at NNLO on Mh is shifted with respect to NLO computations

(where the matching scale is fixed at µ = Mt) by about +0.5 GeV, whose main contributions

can be decomposed as follows:

+ 0.6 GeV due to the QCD threshold corrections to � (in agreement with [14]);

+ 0.2 GeV due to the Yukawa threshold corrections to �;

� 0.2 GeV from RG equation at 3 loops (from [12,13]);

� 0.1 GeV from the e�ective potential at 2 loops.

As a result of these corrections, the instability scale is lowered by a factor ⇠ 2, for Mh ⇠ 125

GeV, after including NNLO e�ects. The value of the instability scale is shown in fig. 4.

The phase diagram of the SM Higgs potential is shown in fig. 5 in the Mt–Mh plane,

taking into account the values for Mh favored by ATLAS and CMS data [1, 2]. The left

plot illustrates the remarkable coincidence for which the SM appears to live right at the

border between the stability and instability regions. As can be inferred from the right plot,

which zooms into the relevant region, there is significant preference for meta-stability of the

SM potential. By taking into account all uncertainties, we find that the stability region is

disfavored by present data by 2�. For Mh < 126 GeV, stability up to the Planck mass is

excluded at 98% C.L. (one sided).

17

Figure 18: Regions of absolute stability, meta-stability and instability of the SM vacuum in the
mt–mh plane (Degrassi et al. 2012).

by the Planck satellite estimate the total energy content of the visible universe to be about1684

5% ordinary matter, 27% dark matter, and 68% dark energy. Therefore, dark matter is1685

estimated184 to constitute about 85% of the total matter in the universe. Dark energy is1686

another unexplained component of the universe that hypothetically permeates empty space1687

and drives the current accelerated expansion of the universe. It is hoped that some of this1688

mystery could be resolved if particle experiments discover new weakly interacting stable1689

particles that could be candidates for what constitutes the dark matter.1690
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Gauge invariance is deep!
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• Loyalty to the gauge principle  
motivated the Higgs mechanism.

• Some have described gauge freedom as a 
“redundancy of description”.

• But it is also a symmetry, similar to spatial rotations but in  
the internal space of the field.

• Can be rotated locally, independently at every spacetime point.

• What does it mean for the laws of nature to be describable by the 
continuous symmetries of Lie groups? 

• What does it mean that the state of the universe can be represented as 
an element of a complex vector space, a Hilbert space?

Spacetime
Internal gauge space

local U(1) phaseWhy do gauge theories work?
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32 10. Electroweak model and constraints on new physics
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Figure 10.4: Fit result and one-standard-deviation (39.35% for the closed contours
and 68% for the others) uncertainties in MH as a function of mt for various inputs,
and the 90% CL region (∆χ2 = 4.605) allowed by all data. αs(MZ) = 0.1182 is
assumed except for the fits including the Z lineshape. The width of the horizontal
dashed (yellow) band is not visible on the scale of the plot.

Removing also the branching ratio constraints gives the loop-level determination from the
precision data alone,

MH = 96+22
−19 GeV , (10.57)

which is 1.2 σ below the kinematical constraint, but the latter is inside the 90% central
confidence range,

66 GeV < MH < 134 GeV . (10.58)

This is mostly a reflection of the Tevatron determination of MW , which is 1.6 σ higher
than the SM best fit value in Table 10.4. This is illustrated in Fig. 10.4 where one sees
that the precision data together with MH from the LHC prefer that mt is closer to the
upper end of its 1σ allowed range. Conversely, one can remove the direct MW and ΓW
constraints from the fits and use Eq. (10.49) to obtain MW = 80.357 ± 0.006 GeV. This
is 1.7 σ below the Tevatron/LEP 2 average, MW = 80.385 ± 0.015 GeV.

Finally, one can carry out a fit without including the constraint, mt = 173.34±0.81 GeV,
from the hadron colliders. (The indirect prediction is for the MS mass, m̂t(m̂t) =
166.8 ± 2.0 GeV, which is in the end converted to the pole mass.) One obtains
mt = 176.7± 2.1 GeV, which is 1.5 σ higher than the direct Tevatron/LHC average. The
situation is summarized in Fig. 10.5 showing the 1 σ contours in the MW -mt plane from
the direct and indirect determinations, as well as the combined 90% CL region.

October 1, 2016 19:59

[PDG 2016]
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Datasets
Recently broke inst. lumi. 
records > 1034 cm-2s-1  The LHC has performed extremely well!!

2015: 3.2/fb

2016: 33/fb

Latest analyses combine collision data at √s=13TeV collected in the years 
2015 and 2016, giving a total integrated lumi ≈ 13-15 fb-1.

Typically 20-40 verticies 
per bunch crossing
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2.3.6. Virtual organization agents. A mechanism is provided to permit experiment-specific
services to be run in a standard way at grid sites. The experiment takes responsibility for the
management of the service, although the site manages the underlying hardware.

2.3.7. Information service. An information service provides a lookup point for information
published by each of the service instances, describing its configuration and details of, for example,
the storage and computing resources.

2.3.8. Application software. The experiment application software is regularly updated and must
be made available at each site. A suite of standard utilities are also provided.

2.3.9. Interoperability. The WLCG grid infrastructure relies on large national and interna-
tional grid projects for some of the underlying tools and support services. The major science
grid infrastructures are the OpenScience Grid (OSG) in the United States and the European
Grid Infrastructure (EGI) in Europe. The latter is the successor to the EGEE and NorduGrid
projects, and it coordinates the various national grid initiatives. WLCG works closely with these
infrastructures to ensure interoperability, even though they may use different base middleware
and tools.

3. DEVELOPMENT AND EVOLUTION OF THE EXPERIMENTS’
COMPUTING MODELS
All the experiments’ computing models were based on the MONARC model discussed above.
However, each experiment based its implementation on different key choices, which has resulted
in quite distinct models. These models have also evolved after having been tested at scale. Each of
the experiments has developed a software layer that integrates its applications with the distributed
computing environment.

The computing model used by ATLAS (Figure 5) (9) is the closest in concept to the MONARC
model. Raw data from the detector are sent to Tier 0 at ∼320 MB s−1; these data are then archived

Tier 2s
Monte Carlo production

User analysis 

ATLAS 

Tier 0

(Re)reconstruction
Organized analysis  

Generation of raw data
Reconstruction 

Calibration and alignment 

Tier 1 Tier 1 Tier 1

Figure 5
The ATLAS computing model.
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Figure 3.27: TODO [310].The ATLAS Distributed Computing: the challenges of the future Hiroshi Sakamoto 
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2.3.6. Virtual organization agents. A mechanism is provided to permit experiment-specific
services to be run in a standard way at grid sites. The experiment takes responsibility for the
management of the service, although the site manages the underlying hardware.

2.3.7. Information service. An information service provides a lookup point for information
published by each of the service instances, describing its configuration and details of, for example,
the storage and computing resources.

2.3.8. Application software. The experiment application software is regularly updated and must
be made available at each site. A suite of standard utilities are also provided.

2.3.9. Interoperability. The WLCG grid infrastructure relies on large national and interna-
tional grid projects for some of the underlying tools and support services. The major science
grid infrastructures are the OpenScience Grid (OSG) in the United States and the European
Grid Infrastructure (EGI) in Europe. The latter is the successor to the EGEE and NorduGrid
projects, and it coordinates the various national grid initiatives. WLCG works closely with these
infrastructures to ensure interoperability, even though they may use different base middleware
and tools.

3. DEVELOPMENT AND EVOLUTION OF THE EXPERIMENTS’
COMPUTING MODELS
All the experiments’ computing models were based on the MONARC model discussed above.
However, each experiment based its implementation on different key choices, which has resulted
in quite distinct models. These models have also evolved after having been tested at scale. Each of
the experiments has developed a software layer that integrates its applications with the distributed
computing environment.

The computing model used by ATLAS (Figure 5) (9) is the closest in concept to the MONARC
model. Raw data from the detector are sent to Tier 0 at ∼320 MB s−1; these data are then archived
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jet

photon

Matrix element
Hard-scatter matrix elements are calculated from a perturbative 
sum of Feynman graphs.

(     )=|∑(        )|

A.1 quantum mechanics 209

The factor, ", is a dimensionless variable to account for experimental ine�ciencies in reconstruct-

ing/identifying/selecting the process. The di↵erential scattering cross section of 2 ! n process can

be calculated from the n + 2-point function, which can be expressed in terms of its irreducible matrix

element as

d� =
Y

f

✓
d3pf

(2 ⇡)3 2 Ef

◆
|M|2

4 E1 E2 |v1 � v2|
(2 ⇡)4 �4

⇣
p1 + p2 �

X

f

pf

⌘
.

In the case of 2 ! 2 scattering with energies high enough to neglect the masses of the in-coming or

out-going particles, one can further simplfy d� to

d�

d⌦

����
CM

=
1

64 ⇡2 E2
CM

|M|2 ,

where CM denotes that the d� is valid in the center-of-momentum reference frame, and ECM is the

center-of-momentum energy of the incoming two particles.

Integrating dN over some running time for the experiment and over the kinematic phase-space of

the process in question gives the theoretical prediction for the expected number of events observed:

N =

Z
dt L

Z
d� "

=

✓Z
dt L

◆
A C � ,

where A is a dimensionless variable to account for the acceptance, the fraction of events produced

in the instrumented fiducial volume selected in the experiment:

A =

R
dt L

R
fiducial d�R

dt L
R

d�
=

R
dt L

R
fiducial d⌦ d�

d⌦

�
R

dt L
,

and C is a dimensionless variable to account for the overall experimental e�ciency to reconstruct

and identify events from the process:

C =

R
dt L

R
fiducial d� "R

dt L
R
fiducial d�

=

R
dt L

R
fiducial d⌦ d�

d⌦ "(⌦)R
dt L

R
fiducial d�

.

In practice, high-energy physics experiments generally estimate these integrals numerically with

Monte Carlo methods, using matrix-element event generators and often very detailed simulations103

of the geometry, material, and instrumentation of the experiments. The integrated luminosity,
R

dt L, is measured independently [180, 319].

A.1.6 Gauge invariance

U(1)EM local gauge invariance

As discussed previously, gauge invariance plays an important role in constructing the SM. As an

example, consider the U(1)EM gauge invariance of electrodynamics. The fundamental representation

103 See the brief discussion of ATLAS simulation in Section 3.6.

p+ p+
2

• “Parton Distribution Functions” (PDFs) 
• “Hard-scatter” matrix element generator 
• “Parton shower”,  

Bremsstrahlung,  
Initial/final-state radiation 

• “Hadronization”

The strong force further complicates things by 
confining quarks in hadrons. Theorists and Monte 
Carlo simulations factor the problem:

p+p+
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“Why do we enumerate possible theories by giving their 
Lagrangians rather than by writing down Hamiltonians? ... that 
symmetries imply the existence of Lie algebras of suitable 
quantum operators, and you need these Lie algebras to make 
sensible quantum theories. ... if you start with a Lorentz invariant 
Lagrangian density then because of Noether’s theorem the 
Lorentz invariance of the S-matrix is automatic.” 
--  
Weinberg, S. (1996). What is quantum field theory, and what did we think it is?

Weinberg

⇒ QFT is naturally relativistic if one requires that the Poincaré 

algebra be satisfied.

Symmetry-first physics
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Effective Field Theories
“it is very likely that any quantum theory that at sufficiently low 
energy and large distances looks Lorentz invariant and satisfies the 
cluster decomposition principle will also at sufficiently low energy 
look like a quantum field theory. ...
    This leads us to the idea of effective field theories. When you 
use quantum field theory to study low-energy phenomena, then 
according to the folk theorem you’re not really making any 
assumption that could be wrong, unless of course Lorentz 
invariance or quantum mechanics or cluster decomposition is 
wrong, provided you don’t say specifically what the Lagrangian is.  
As long as you let it be the most general possible Lagrangian 
consistent with the symmetries of the theory, you’re simply writing 
down the most general theory you could possibly write down.” 
--  
Weinberg, S. (1996). What is quantum field theory, and what did we think it is?

Weinberg

⇒ QFT is a way of parametrizing effective, local degrees of freedom.
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Data science workflow
1. Define the question of interest  

SM and BSM physics

2. Get the data 
dq2/rucio, Globus GridFTP

3. Clean and correct the data  
GRLs, CP tools, RootCore, SUSYTools, QuickAna

4. Explore the data 
ROOT, event loops, histograms

5. Fit statistical models 
RooFit, RooStats, HistFitter, CLs/Bayesian methods

6. Communicate the results 
talks, notes, publications, axiv

7. Make your analysis reproducible 
CDS, SVN, HEPData, RECAST
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taken from: http://simplystatistics.org/2015/03/17/data-science-done-well-looks-easy-and-that-is-a-
big-problem-for-data-scientists/

 HEP/ATLAS equivalent

Data cleaning can 
be a significant 

part of the 
analysis effort!

Data science done well looks easy after your data is clean.

http://simplystatistics.org/2015/03/17/data-science-done-well-looks-easy-and-that-is-a-big-problem-for-data-scientists/

