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The world | see is Science has identified real patterns,
real. What are you relationships, and structures (at least
all arguing about? within a regime) in nature.
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Scientific Realism
Science makes real progress
in describing real features of

the world.
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Introduction to
particle physics



Particle Physics

Fundamental questions

. . p— elec1tgon
of particle physics: W /< \ <10"°cm
N proton
|. What is matter? Q e quark
. ’ <10""°cm
2. How does it interact? nucleus @ ]
atom~10"°cm e ~1d:i3cm
Four fundamental forces at low energies:
|. Gravity - very weak, no complete quantum theory
2. Electromagnetism - binds atoms, chemistry
3. Strong force - nuclear range, binds nuclel
4. Weak force - nuclear range, radioactivity, solar fusion

Ryan Reece (UCSC)
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m Field Theory (Q‘FT)‘/,,", 9

o Every tye of matter/energy has a corresponding field.

e In QFT, fields are (effectively) what is fundamental, and particles are
quantized and often localized excitations in the fields.

e To satisfy relativity, they are the representation of the Poincare group:
scalars, vectors, spinors, tensors.

 Non-trivial aspects of QFT have
been tested to better than a part
per million, e.g. the anomalous
magnetic moments of a, (exp) = 11 659 208 (6) x 10""° (0.5 ppm)
electrons and muons.

e Very impressively,
empirically adequate:
arguably best tested science.

Ryan Reece (UCSC) ’analogy from Kyle Cranmer (NYU)
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The Standard odel

e Gauge symmetries determine the e,
character of the forces between fermion B

fields thi’OUgh exchanglng gauge bosons. Glashow, Salam, Weinberg (Nobel Prize 1979)

Fermions Bosons

 Bosons and chiral fermions develop mass auars. [N DU 7l o
terms that still preserve the gauge e
symmetries of the Lagrangian through the d s b 4

down strange  bottom Z boson

Higgs mechanism (proposed in 1964).
Leptons % Mi V. W

 The SM gauge group is clecron | mion | tau | [UEGSSE
e U T g
SU(3)C x SU(Z)L x U(I)Y glectron  muon tau gluon

Electroweak force

" y Higgs potential:V(¢) b

Strong Higgs mechanism, - <¢> vacuum
force EW symmetry breaking i expectatilon
Electromagnetic value

+ weak forces

Ryan Reece (UCSC) 7




Unanswered problems in particle physics

e Ad hoc features neutrinos de se pe
_ H@ o X J
« Why SUB)XSUQ)xU(I) ? ’ ‘
X Le Te
b Neutrlno lelng and masses (Dlrac or Malorana) Uil ol ol ool el s el o ek vl ol cvmd vl 1
3 < & 5§ 0§ 3
e Matter-antimatter asymmetry _— < < < < <

- -rotational ueldciw
' (km/s]

& . . . .
-
4 )

* Strong CP-problem

Dark matter and dark energy

* 5% SM, 27% dark matter, 68% dark energy

50000 100000
distance from center Clight years)

LEP (1991);

* Hierarchy problem(s)

Myiggs VS Mpjancks

-

e quark masses range: IOS, leptons: 10°
* Fine-tuning:

*  EW-scale, flatness problem, vacuum stability, etc.
* Unification? Supersymmetry!?

* Why did the early universe
have such low entropy? ~ 10* GeV gt

> 4 6 8 10 12 14 16 18
Ryan Reece (UCSC) current colliders Log, ,(Q/GeV) 8




Unification?

blanetar
motion Newton, Einstein _ _
universal gravitation
_ general relativity
terrestrial
gravity
Higgs mechanism
electricit unified
Maxwell . quantum
electromagnetism /| SU(3)c X SU(2)L X U(I)v gravity
QED U(1) GWS Standard Model L
magnetism electroweak Strings
Su(2) Ju(1)
’ SUSY? \ Grand
weak force Unificatign
SU(5), $0¢10),
Z' 7 ’
strong force : : . 5
QCD SU(3) : : : : Energy
—_
102 ? ~10167 ~10197 [GeV]
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Effective Theories
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Ryan Reece (UCSC)

Effective theories emerge
at different scales and
nest into different regimes
which have some
autonomy of description.

From: Flip Tanado (2009). Quantum Diaries blog:
My research [Part 2] effective theories.”



http://www.quantumdiaries.org/2009/07/02/my-research-part-2-effective-theories/

Effectlve F|eld Theories

have a regime of
applicability: below a
high-energy cut-off, A.

Donald Rumsfeld’s
e known knowns

e known unknowns

¢ unknown unknowns

strongly
interacting

A

coupling

weakly
interacting

(violations of QFT itself)

Ryan Reece (UCSC)

What about new particles/forces?

F\\
\‘\\ accessible
. known
\\\\ knowns
. Effective Field
R ».  Theory applies
known \\\\
unknowns .
dynamics above the cut-off A .
=
heavy/ light/
short range/ << €hn ergy long range/
high energy low energy

Slide from Sean Carroll:
“Quantum Field Theory and the Limits of Knowledge” "



http://www.preposterousuniverse.com/blog/2015/04/21/quantum-field-theory-and-the-limits-of-knowledge/

Multiple realizability

A given effective field theory with cutoff A could have
many “ultraviolet completions™ at higher energies.

That's why it's hard to do experiments relevant to
quantum gravity: we expect A ~ E

planck

~10%E, ...

loop quantum gravity string theory dynamical triangulations

Accepting the empirical adequacy or structural realism of QFT in a
regime does not commit one to any “‘fundamental” ontology.

: " N
Slide from Sean Carroll: ‘- \

"Quantum Field Theory and the Limits of Knowledge”
Ryan Reece (UCSC)



http://www.preposterousuniverse.com/blog/2015/04/21/quantum-field-theory-and-the-limits-of-knowledge/

Ryan Reece (UCSC)

QFT puts very tight
constraints on new phenomena.

X new particle

If a new particle can
iInteract with ordinary

new
Interaction

particles:
P p
time
Then that particle P X
can be created in
high-energy collisions.
K X

“Crossing symmetry.”

Slide from Sean Carroll: B |
"Quantum Field Theory and the Limits of Knowledge”



http://www.preposterousuniverse.com/blog/2015/04/21/quantum-field-theory-and-the-limits-of-knowledge/

Example limits from ATLAS

. . g-g production, g— ~?—> v/2)G (GGM), +E:iSS final state
Search for SUSY gluino-neutralino g g_gp'AT'LA'Sg'q% T bserved it (1 oo | 3
0} — 4AlrAs * 0-theory :
I + 1< e I 1 [eeq1a Ty —  mmm——e Expected limit (1 0,,,) -
decays to diphoton + missing energy ., [ L=zt s=13Tev Expected i (1 o)
2000 — —
1500 [— By —
= E :
1000 [— —]
e ( [1606.09150] -
1200 14|OO 16|00"I — 18|00 20|OO — 22IOO[G Vi
mg e
Search for Higgs decaying to Ty BT
dditi | invisibl des: Hi 2108 SOV POTETREE \s=7TeV, [Ldt=4.5fb"
additional invisible modes: Higgs _ s=7TeV, [Ldt=45

~ portal to dark matter?
q

q
Ryan Reece (UCSC)

SIS

\s =8 TeV, [Ldt=20.3 fb™
ZH - ¢£¢ +inv.

|||||
||||||
|||||||||||||||
R
||||||
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We need high energies

K

proton - (anti)proton cross sections

] ] lllllll J ] lll: ll

Gtot

Tevatron

o, (E;" > s/20)

o (E, > 100 GeV)

WH

MH=1 25 GeV{

WJS2012

VBF

[
lllllll A 1
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10°
1,000,000 TeV [ . . .

A “Livingston plot” showing the evolution . -
(7, 4.7 Tev of accelerator laboratory energy from 1930 Hﬁs 20 I 2) 108 B
5 . until 2005. Energy of colliders is plotted in / C
100,000 TeV |- | terms of the laboratory energy of particles / = i
C 14Tev colliding with a proton at rest to reach the / 10" |
Q same center of mass energy. LHC -
-U 10,000 TeV [~ ] 6 I
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a Discovery of F
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collision energy +s (TeV)

rate of events/sec for £ = 10 cm™s”



Large Hadron Collider

27 km cu'cumference e JO' pr'otons / bunch

1232 dipoles: I5m ,8.3 T e 1000 bunches/ beam

100 tons liquid He, 1.9 K e 20 MHz, 50 ns bunch spacing
p-p collisions at Js =7-8 TeV  1-40 interactions / crossing
inst. luminosity = 1032-1034 cm-2s-! e 0.5 % 10? interactions / sec

» : ) 5 = -
\‘ e _ . SV + 2 e -
! . —
. : -

A BN
Geneva, SW|tzerIand

"

LHC - B CERN
za ot 8 e ATLAS ALICE
Point 1 “=z Point 2

cMms = -
~ Point 5 ¢ ]

SPS "Jl
4&9; S s 4\* -
(| v‘

. \
BCB ATI.AS '
A
‘

ALICE A\

LeP/LHE
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ATLAS Detector

ATLAS is a 7 story tall, 100 megapixel “camera”, taking 3-D pictures of proton-
proton collisions 40 million times per second, saving 10 million GB of data per
year, using a world-wide computing grid with over 100,000 CPUs. The
collaboration involves more than 3000 scientists and engineers.

44m
Humans — —~
f e) o . : |
(for scale) - collision point Muon Spectrometer
: rf*f— T
y y  Calorimeter

, 495’ Tracker

Tile calorimeters

| : LAr hadronic end-cap and
forward calorimeters
Pixel detector \

LAr electiromagnetic calorimeters

Toroid magnets

Muon chambers Solenoid magnet | Transition radiation tracker

Semiconductor tracker
Ryan Reece (UCSC) |7
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What do we reconstruct?

M ®* muons

* electrons & photons

* jets of hadrons
* T-and b-tagged jets

®* missing energy

\ How do we search?

T-jet

ATLAS Physics Groups

SUSY Exotics
[+jets, Y tjets, ... LW, ..

Currently ATLAS has published 579+ papers



Statistical
inference




Knowledge = JTB-G

propositions

well-formed

C__

knowledge
false &

denial / false positives
lucky denial

(CC-BY 4.0) 2014 Ryan Reece philosophy-in-figures.tumblr.com

Ryan Reece (UCSC) from: http://philosophy-in-figures.tumblr.com/ 20



Problem of induction

* Our justification can be

» deductive: following by definition (logic/
mathematics)

» inductive: generalizing a universal based on
limited data

* Induction is always susceptible possible
“black swans”.

* Later, 20th century positivism can largely
be seen as a project staying true to the
epistemological methods of science, but
without the statistical confidence to
make claims about the reality of their
models (metaphysics).

Ryan Reece (UCSC)

David Hume (171 1-1776)

21



A main goal of this talk

| want to facilitate an appreciation for statistical confidence
intervals like below, and try to touch ground with how
LHC physicists go from collecting and reducing data to
performing a statistical test.

Tevatron Run I Preliminary, L=0.9-4.2 fb"’

T N 1 I AN AR Lot’s of important details glossed
c% oy fﬁ:;léf;lf‘;-,LEP,EXC|USIOI‘I it Tevatron. P : S
P i | S Exclusion over. Great pedagogical documents
= Yy amaa Expected Y . e
: 10 e Qb,s,er,v,ed,,,,,,,::;:::: ffé:::ﬁﬁﬁﬁﬁfﬁﬁﬁﬁfﬁﬁﬁ::?::::] On StatIStICS.
3 | » Cranmer, K.“Practical Statistics
o | a4 for the LHC”. [arxiv:1503.07622]
& L N\ a1  » Cowan, G. (1998). Statistical Data
******************************************************** Analysis.
1 N y » ATLAS Higgs Combination
B R s, o0p [arxiv:1207.0319]
100 110 120130 140 150 160 170 180 190 2oo » Cranmer et al. [arxiv:1007.1727]

[arxiv:0903.400 1 ] I_|(GeV/c )

Higgs was later found in 2012 by
Ryan Reece (UCSC) ATLAS and CMS with my =125 GeV 272



Scattering cross sections

At colliders, it can be shown that the differential
rate of any given process factors as

dN = %dt da\

= (effoency) (luminosity) d(time) d(cross section)
QFT shows that the cross section can be calculated In

terms of a matnx element:
dJ:H \r‘/\/l|2 (274 54 p1—|-p2—2p)
f (27’(’) 2Ef 4E1 E2 ‘U1—02| /

The number of expected events N = / dt L / do €

can be calculated by integrating

the differential tion over
e |erlen|a CI”OSSSGCII V :(/dtL)ACU

the running of the experiment.

= (integrated luminosity) (acceptance) (efficiency) (cross section)

Ryan Reece (UCSC) 23



-LHC/CERN :
3-level trigger
40 MHz — 100 kHz

ATLAS
Data
Flow

5y N . —
=T |o..(‘)|.o/ooc/>||, Trigger ~10 PB/year
— Worldwide LHC Computing Grid
, ~100k CPUs
—— Monte Carlo production . over 100 PB

Fast Shower

Reconstruction

Athena Framework

‘ |, Local resources

Analysis

Atifast Il
Generator B N
7 \ -
X/ X/ J—
- = — — -
" generated simulated reconstructed
og/d
: ¢ data/MC
=2 ¥/
QFT matrix primary deteptor tracks,.
element kinematics hits clusters, jets

~GB-TB

\ B
—
plots/
tables

Results!

ab initio simulation
Ryan Reece (UCSC)
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Ryan Re

Building a model

N(expected) = N(correct-ID) + N(fake)

* Bottom-up

ey

* well-identified objects
have scale factors from
control regions

e estimated with detailed
Monte Carlo simulation

~ 2000r

)
G 1800

ﬁ -
o 1600

2 1400

vents /

c
o
lw 1000

800L" + pata

6001

400

0

1

u  =3080+2 MeV
dat

Eu L =3083+1 MeV
MC

12001 5™ _ 132:2 MeV

— Oyc = 1341 MeV

— Fit
[ ]Jp—ee MC

- J Background from fit
200F

—

Top-down , “data-driven”

various magic with data
depending on the analysis and
your creativity

side-band fit

fake-factor method

+ Bottom-up

Monte Carlo

Data-driven
side-band fit
fariv: | 110.3174]
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Is this significant?

Statistical (and philosophical)

questions:

* How can we be precise
and rigorous about how
confident we are that a
model is wrong?

» Hypothesis testing

* How can we calculate the
best-fit estimate of some
parameter?

» Point estimation and
confidence intervals

Ryan Reece (UCSC)

Events / 5 GeV

1 L I B B B B 7
12— Data 2011 ATLAS -
B () i
10— Total background H—ZZ "—4l E
- . m,=125 GeV, 1 x SM :
8 —
- Is=7TeV, f Ldt=4.8 10" :
6 __ @ _
- 3 events
41— T s 44
t l T j_ﬂt T :hl_“’*__“—eﬁ?,
O_ A B B 111 Ll :_"1 l 1-1“1 | | 1-1'-1 1-1 0 _
100 120 140 160 180 200 220 240

my, [GeV]

Has a local po of = 2%

[arxiv:1207.0319]
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Confidence Intervals

* A frequentist confidence interval is constructed such that, given

the model, if the experiment were repeated, each time creating
an interval, 95% (or other CL) of the intervals would contain the

true population parameter (i.e. the interval has =95% coverage).

» They can be one-sided exclusions, e.g. m(Z’) > 2.0 TeV at 95% CL

» Two-sided measurements, e.g. my = |125.1 £ 0.2 GeV at 68% CL

g
"

» Contours in 2 or more parameters |

This is not the same as saying “There is a 95% probability that the
true parameter is in my interval”. Any probability assigned to a
parameter strictly involves a Bayesian prior probability.

Bayes’ theorem: P(Theory | Data) « P(Data | Theory) P(Theory)

Ryan Reece (UCSC) ikelihood prior 27



Statistical model

“Marked Poisson’ Probability model (PDF):

D=A{x,...,x,}
dalta #expected events observable “/l ikelihood”

(D\V o) = Pois(n|v) Hf Tela) = L(a)
/ e=1 histograms function of params
{«v} parameters include: with data fixed
|. parameters of interest {u}: template morDhlng

Parametric model: f(XIO()

p e.g. Higgs mass (my) and

signal strength (u) a = +1 3:3:
u=0 no signal, y=1 nominal signal S0l

B4
; 3).3A
2. nuisance parameters {0}: '. Q v
systematic uncertainties to be “profiled” away ._j S
e e s . X)|a=o
by maximizing L for a given p. f. I L
» e.g.luminosity uncert., jet-energy ~ f |
L
scale, electron energy scale, electron i \a = —1
gy o =0

identification efficiency, etc.

Ryan Reece (UCSC) [arxiv: 1503.07622, https://indico.cern. ch/event/24364 /] 28



https://indico.cern.ch/event/243641/

Statistical model

General probability model with many channels and constraints:

channels events ~constraints
foi(Dam:Gla) = [ [Pois(nelve(@) [ felweela) | - T folaplay)
cEchannels L e=1 d  pES

| ' *~joint probability model

channels

At the time of the Higgs discovery

interpolations

vi — vi(a), (2012) combined model had 00
channels &SOO+ nui_s_ance_ params.

fi(z|a)

5 IH H
i
B K 3 ] H H H g 3 H E 8 B £ 3 H 3 §

N L s e e e e e fle | e

=== dodddooobule
observables Qp parameters

Ryan Reece (UCSC) [arxiv:1503.07622, https://indico.cern.ch/event/243641/] 29



https://indico.cern.ch/event/243641/

Maximum Likelihood Estimate

Consider an experiment with [V repeated measurements that are Gaussian
distributed. The likelihood function is therefore

N
1 (5 — p)°
L:HO 7Texp(— 5 )
i=1

The MLE for the mean, i, can be found by maximizing the likelihood func-
tion, or equivalently, its natural logrhythm.

N
InL =—N In(o Z

=1

Olnl (x; — )
0= oL _Z o2

1=1

1 N
- N;

Ryan Reece (UCSC)
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Statistical point estimation

“Profiling”

Calculate the profile likelihood ratio:

Similar to the Likelihood, but does not
depend on the nuisance parameters.

Maximum Likelihood Estimate =

Maximize )\(,u) /

= minimize —ln)\(,u)

e.g. Best-fit Higgs mass
myr = 125.09 £ 0.21 (stat.) & 0.11 (syst.) GeV

Ryan Reece (UCSC)

A(p) =

A
A

L(p,0)

A

Lyl, 0)

”~ = Maximum Likelihood
Estimates
A = MLE for given

J_ [ [ [ [ | [ [ | | J_
-~ ATLAS and CMS H—yy ]
- —— H—ZZ—4] =
- LHC Run 1 —— Combined yy+41 -
C e Stat. only uncert. ]
F05% CLN\ . \ o\ -
IR\ A\ A E
% | | | | | | | | | | | 1__
24 124.5 125 125.5 126

[arxiv:1503.07622, 1503.07589] m,, [GeV]



Hypothesis testing

* Null hypothesis, Ho: the SM

Null hypothesis (Hp) is

e Alternative h)’POthGSiS, . B Valid/True Invalid/False
some nhew Ph)’SiCS feiact Type | error Correct inference
ele (False Positive, a) | (True Positive, 1-8)
¢ T)’Pe-l error. Judgment of Null Hypothesis (Ho) Correct inference .
.. , , True Negative, ype Il error
false positive rate (&) Fail to reject | fue1-2?a " (False Negaive, B

® _ .
T)’Pe I I err.or° Type | = True Hp but reject it (False Positive)
false negat|ve rate (B) Type Il = False Hp but fail to reject it (False Negative)

e Power: |-
* Want to maximize power for a fixed false positive rate

* Particle physics has a tradition of claiming discovery at
50 = po=2.9%107 = | in 3.5 million, and presents

exclusion with po = 5%, (95% CL “coverage”).

* Neyman-Pearson lemma (1933): T (| H
the most powerful test for fixed (x| Ho)

X is the likelihood ratio: L(:C Hl)

Ryan Reece (UCSC)
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July 4, 2012
CERN announces the discovery of a new particle by
ATLAS and CMS, conS|stent with the nggs boson

> & «aB|oIa Glanottl Jo& Incandela
bl)c \cwl]orkbuucs &= ATLAS an’EM pokspersons

ROMNEYNOWSAYS  Physicists Find Elusive Parti lSa as Key to Universe I

s g b ’
N ""i July 5 cover of the New York Times:
% '&A!J’,’,‘

‘ la

“’f._.'_-:"‘-‘ . ? 2y a5 | “Physicists Find Elusive Particle Seen
| "'%/ B ani w5 - as Key to the Universe™

! ,

- -
T —— - v




Higgs discovery

* Two channels with precise mass measurements:

H—yy and H—»ZZ— 4l .

e H—>WW observes a broad but clear excess.

L]

1

Branching ratios

107¢

102 ¢
channel bb T WW Y4 YY
BR 58% 6% 22% 3% 0.2% 10°7900 120 140 160 180 200
M, [GeV]
H ﬂ XX > T I T H ﬁlzqu I4II T T T T

> _ | ! ! ot | L ! ' L | ! L ! | ! o - -

[ - = © L e Data ATLAS ]

© 3500F ATLAS ¢ Dat = O o5 [l Background zz" ) ]

Ry = — Sig+Bkg Fit (m =126.5 GeV) = 0O eof H—ZzZ''—4l i

H -

» 3000 . = L+ - Background Z+jets, tt .

5 = e e Bkg (4th order polynomial) = qC) i Sianal 195 GeV .

2 25001 — 2200 [ ]Signal (m =125 GeV) ]
2000F-  Tw = " % Syst.Unc. .
1500 = {5[1s =7 TeV:|Ldt = 4.8 fi” -
1000~ 15=7 TeV, [Ldt=4.8fb" . s - 8 TeV: [Ldt = 5.8 1o

500F- 15=8 TeV, [Ldt=5.9fb" H-vy = 105 .
- 1 Il | 1 | — - i ®

D 200E ' ' 3 i i

m L |

@ Sr

C L
9 [
L ‘ 1 l . . O—
100 110 120 130 140 150 160 100 150 200 250
m,, [GeV] m,, [GeV]
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Higgs Confidence

Inconsistent with background only ConS|stent W|th SM ngg_
L L L L L L AL L B L L L B T ——— 5
ATLAS 2011 + 2012 Data . ATLAS 2011 — 2012 —
[Ldt~464816"(s=7TeV [Ldt~5859f"Vs=8TeV 51 (527 TeV: [Lot = 4.7-4.8 b + Best it -

- - Expected Combined - - - Expected H — ZZ* — lli - - - Expected H — bb - @=8TeV:det=5.8-5.9 fb ——68%CL |

— Observed Combined — Observed H—ZZ* — Il — Observed H — bb S "95% CL -

| _

- - Expected H — yy - - - Expected H — WW* — Ivlv Expected H — 1t S T —H=yy 5

— Observed H = yy — Observed H— WW* — Ivlv Observed H — tt %0 R SR _H—>ZZ()*—> 4l .
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Excluding instead of discovering

Sample the test statistic with pseudo experiments

Construct test statistic:

qu = —2In(A(p))

Wilks’ theorem: asymptotic
to to a X2 distribution,

larger values indicate greater 107}

incompatibility.

Throw Monte Carlo pseudo
experiments to find T
which has a p-value of 5%.

If this signal strength were
there, only 5% of
experiments would have

higher g,.. = 95% CL or 20

[arxiv:1007.1727, 1502.07177]

o(pp—Z' + X) x B(Z'—<x) [pb]
=

103

A TLAS

-
.~
R
-
~

L
__________________

@ 8TeV 195 2o3fb1 -

—e— Observed limit

rh drh d + rl prh d comblned

Expected limit —

Expected = 1o E (my PhD theSiS)

Expected = 20

Observed Z'
Observed Z'g

1
4 SSM

E excludes

95% credibility limits / m(Z,SSM) <202

T TeV @ 95% CL
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1 OOO

1 500

2000 2500
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ATLAS SUSY Searches* - 95% CL Lower Limits

ATLAS Preliminary

Status: August 2016 \Vs=7,8,13TeV
Model &1 T,y Jets ET™ [Lan] Mass limit Vs=7,8Tev [ 5=13TeV Reference
T T T T T T T T I T T T T T T
MSUGRA/CMSSM 0-3e,u/1-27 2-10jets/3b Yes 203 |48 1.85 TeV m(q)=m(§) 1507.05525
4, G—q%) 0 2-6jets  Yes 13.3 m(¥))<2 oo GeV, m(1% gen. §)=m(2" gen. §) ATLAS-CONF-2016-078
® 43, §—qX (compressed) mono-jet  1-3jets  Yes 3.2 m(g)-m(¥))<5 GeV 1604.07773
< g g—>qu(1) 0 26jets  Yes 133 m(E})=0 GeV ATLAS-CONF-2016-078
% 38, §—qa¥1 —qqW* 4 0 2-6jets  Yes 133 m(¥})<400 GeV, m(¥*)=0.5(m(t})+m(z)) ATLAS-CONF-2016-078
S & g—>qq(ft’/vg>\<1 Se.pu 4 jets - 13.2 m(t})<400 GeV ATLAS-CONF-2016-037
o 88 &—oqqWZx, 2e,u(SS) 0-3jets  Yes 132 m(¥}) <500 GeV ATLAS-CONF-2016-037
= GMSB (¢ NLSP) 1-27+0-1¢ 0-2jets Yes 3.2 1607.05979
S GGM (bino NLSP) 2y - Yes 3.2 cr(NLSP)<0.1mm 1606.09150
8 GGM (higgsino-bino NLSP) Y 1b Yes 20.3 g 1.37 TeV m(¥7)<950 GeV, cr(NLSP)<0.1 mm, 11<0 1507.05493
—  GGM (higgsino-bino NLSP) Y 2 jets Yes  13.3 m(¥7)>680 GeV, cr(NLSP)<0.1 mm, >0 ATLAS-CONF-2016-066
GGM (higgsino NLSP) 2e,u(Z) 2 jets Yes 20.3 g 900 GeV m(NLSP)>430 GeV 1503.03290
Gravitino LSP 0 mono-jet  Yes  20.3 | F'/2scale 865 GeV m(G)>1.8 x 107* eV, m(g)=m(3)=1.5TeV 1502.01518
3 '8 28, g—bbY) 0 3b Yes  14.8 m(¥})=0 GeV ATLAS-CONF-2016-052
ODE o) 0-1ep 3b Yes  14.8 m(¥))=0 GeV ATLAS-CONF-2016-052
om0 28, 3—biX) 0-1e,u 3b Yes 201 |z 1.37 TeV m(¥Y)<300 GeV 1407.0600
w o Dbibi, bi—bY) 0 26 Yes 32 [HIEEEea0Gev m(¥1)<100 GeV 1606.08772
=<9 bb, by —tT 2e,u (SS) 1b Yes 13.2 by (/\?(1))<150GeV mm) m(¥))+100 GeV ATLAS-CONF-2016-037
g S AR, hobiT 0-2e,pu 1-2b Yes 4.7/13.3 | 417-170 GeV m(¥y) = 2m(¥}), m(t})=55 GeV 1209.2102, ATLAS-CONF-2016-077
a8 i, t1—>Wb)(1 or Y 0-2e,u 0-2jets/1-2b Yes 4.7/13.3 |#  90-198 GeV m(t))=1 GeV 1506.08616, ATLAS-CONF-2016-077
S §- fif1, t1—>c/\,’1 0 mono-jet  Yes 3.2 m(f)-m(¥})=5 GeV 1604.07773
© Q fifi(natural GMSB) 2e,u(2) 1b Yes 20.3 150-600 GeV m(¥})>150 GeV 1403.5222
55 hbh,h-oh+Z 3e,u(2) 1b Yes 133 |#& m(¥})<300 GeV ATLAS-CONF-2016-038
by, b=t +h leu 6Bjets+2b Yes 203 |4 320-620 GeV m(¥})=0 GeV 1506.08616
TLrlLR, T8 2e.p 0 Yes 203 |7 90-335 GeV m(7?)=0 GeV 1403.5294
XTXT, X1 —Tv(ew) 2e,u 0 Yes 133 m(¥7)=0 GeV, m(€ 7)=0.5(m(¥7 )+m(¥})) ATLAS-CONF-2016-096
/\7‘{/\?;,/\7?—)7'1/(‘1'17) 27 - Yes 14.8 m(¥))=0 GeV, m(%, #)=0.5(m(¥; )+m(,\/1 ) ATLAS-CONF-2016-093
> ‘g )?1)? HZngLf(vv),[flgLf(f/v) 3e,u 0 Yes  13.3 m(FT)=m(¥3), m(X?):O, m(fb 7)=0.5(m(X7 )+m(¥Y)) ATLAS-CONF-2016-096
T X1X8—>WX zZX 2-3 e, 0-2jets  Yes 20.3 425 GeV m(ty)= mQ\’z) 1)=0, Z decoupled 1403.5294, 1402.7029
S X WHIRRY, hobb/WW/tt/yy €Y 026 Yes 203 |E.X; 270 GeV m(s)= mm) ¥9)=0, 7 decoupled 1501.07110
XoX3, X33 =Tt 4ep 0 Yes  20.3 | X 635 GeV m(¥2)=m(¥3), m(¥1)=0, m(Z, 7)=0.5(m(¥3)+m(¥})) 1405.5086
GGM (wino NLSP) weak prod. Teu+y - Yes 203 |Ww 115-370 GeV er<imm 1507.05493
GGM (bino NLSP) weak prod. 2y - Yes 203 |Ww 590 GeV cr<imm 1507.05493
Direct X1 X7 prod., long-lived ¥;  Disapp. trk 1 jet Yes 203 |X 270 GeV m(FE)-m(E)~160 MeV, 7(¥7)=0.2 ns 1310.3675
Direct X1 X7 prod., long-lived ¥7 ~ dE/dx trk - Yes 18.4 | ¥ 495 GeV mTE)-m(P))~160 MeV, 7(¥1)<15 ns 1506.05332
SR Stable, stopped g R-hadron 0 1-5jets  Yes 279 |2 850 GeV m(¥7)=100 GeV, 10 us<7()<1000 s 1310.6584
o'E Metastable 2 R- hadron dE/dx trk - - 3.2 m(¥})=100 GeV, r>10 ns 1604.04520
8 g GMSB, stable 7, Xl—rr(e ,u)+T(e w 1-2pu - - 19.1 537 GeV 10<tanB<50 1411.6795
= GMSB, X1—>yG long-lived X1 2y - Yes 20.3 440 GeV 1<‘r()?1)<3 ns, SPS8 model 1409.5542
88, X|—eev/euv/uuv displ. ee/ep/pp - - 20.3 1.0 TeV 7 <c7()(1)< 740 mm, m(g)=1.3 TeV 1504.05162
GGM 33, ¥\ —ZG displ. vix + jets - - 20.3 1.0 TeV 6 <ct(¥})< 480 mm, m(z)=1.1 TeV 1504.05162
LFV pp—¥, + X, V. —eu/et/ut ep,eT,ut - - 3.2 A5,=0.11, 132/133/233=0.07 1607.08079
Bilinear RPV CMSSM 2e,u (SS) 0-3b Yes 20.3 1.45 TeV m(g)=m(g), ctrsp<1 mm 1404.2500
TR, X =W X —eev, epv, vy 4 e - Yes  13.3 m(/?1)>400GeV A0 (k= 1,2) ATLAS-CONF-2016-075
N X, )?T—)W/f’l,/\?l—rr‘rve, eTvy 3eu+t - Yes 20.3 m(X1)>O 2xm(¥7), A133#0 1405.5086
a % é—wqq 0 45large-Rjets - 14.8 BR()-BR(6)=BR(c)-0% ATLAS-CONF-2016-057
o 33, g—)qul P q9q 0 4-5large-Rjets - 14.8 m()c1 )=800 GeV ATLAS-CONF-2016-057
33, g—)l‘tXl X\ = qqq 1e,u 8-10jets/0-4b - 14.8 m(¥))=700 GeV ATLAS-CONF-2016-094
38, 3—0t, [ —bs 1e,u 8-10jets/0-4b - 14.8 625 GeV<m(7;)<850 GeV ATLAS-CONF-2016-094
fify, fi—bs 0 2jets+2b - 15.4 [450-510 GeV ATLAS-CONF-2016-022, ATLAS-CONF-2016-084
hi, 1—bt 2e,pu 2b - 20.3 0.4-1.0 TeV BR(fi—be/p)>20% ATLAS-CONF-2015-015
Other Scalar charm, 5—>o€‘f 0 2¢ Yes 20.3 ¢ 510 GeV m(¥?)<200 GeV 1501.01325
L L L L L L L L l L L L L L L
*Only a selection of the available mass limits on new 10! 1

states or phenomena is shown. Mass scale [TeV]
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Systematics

X =+

measurement uncertainty
(Stat @ Syst1 @ Systz @ Systs)

[ AR

does not scale

B VN h VN with more data
How unlucky | : . |
could this be? How biased could this be?

statistical uncertainty: Poisson uncertainty that scales
as1/vN (for large V).

class-1 systematic: constrained in auxillary measurements in
the same dataset, scales as1/v/ N (for large ).

class-2 systematic: an uncertainy from an independent
measurement that you do not control.

class-3 systematic: something not accounted for in this
model (hopefully negligible).

Classification proposed by Sinervo (PhyStat2003) (cc-By 4.0) 2016 Ryan Reece philosophy-in-figures.tumblr.com

Ryan Reece (UCSC)

from: http://philosophy-in-fisures.tumblr.com/
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Ral Patterns

Ryan Reece

-+

- ATLAS Data 2010, \'s=7 TeV, [Ldt=40pb” ]

= w, = 30802 MeV
C W = 3083+1 MeV

= 0., = 1322 MeV
Oy = 1341 MeV

- -eData

— — Fit

- [ Jy—eeMC

- DI Background from fit

What is an electron?

* An excitation in a Dirac spinor

field representation of
SU(2)xU( 1), the “Platonic electron”.

* A software object with a
reconstructed track and
calorimeter deposit, passing some
selection cuts, the “pragmatist
electron”.

* A set of voltages and timings
read-out from the detector,
the “Ramsified electron™.

= Reality has a hierarchy of onion

layers, but it has real patterns
(Dennett 1991).
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Machine Learning



Neural Networks

Wi ‘ Wi
: : : "§§5z;§%%7":§§§im, P
Inspired by the biological cortex O O
A v>4/',/“\\\‘\“./
Can be used for classification or éf’g.,:;:;‘%’-;’j’é,if‘:?é‘
regression with many input variables. IR )=
egressio 7 inp -
Using NNs and other MVAs has Iput Iayer ' |
. idden layer
been common in HEP for years, for S > e
o o . X Yi Zy
pattern recognition, particle |1D,
event selection... ATLAS pixel cl . +h NN
IXel clustering wit S
In the past, always used shallow NN:s. P U 5 o
ATLAS uses NNs in many places, e.g. Boor TS smusten | e
. . 30-06; . -pixel wide clus ersé
pixel clustering. o yl TP
o 0.04 =
Jet tagging for taus and b-quarks has 003 E
. . . 0.02F =
used NNs in many iterations. oot | | E
Q5560800 B0 00150

Local x resolution [um]

[1406.7690]
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Examples of CNINs

il

* In 1990s,Yann LeCun pioneered

2L

2

3

451617

by

2

'

#516

J

Convolutional Neural Nets (CNN)
and used them for Optical Character
Recognition.

Now it is standard in image
recognition and captioning, NLP,
computer vision, etc.

Pigou et al. (2014). Sign Language Recognition
using Convolutional Neural Networks.

A

(a) RGB (b) Depth map
Convolutions Pooling Convolutions  Pooling Convolutions Pooling
16@Q5x5 2x2x2 32@>5x5 2x2x2 48@4x4 2x2x2
Z
Input v Z
videos
Feature
2Q@Q64x64x32 map
- 7 . 7 .
~" ~" ~" ~"
Layer 1 Layer 2 Layer 3 ANN
- 4 - 4
~" ~~

Ryan Reece (UCSC) Feature extraction

Classification
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Why go deep?

* Multiple layers allow for
feature extraction.

N
PANEA

* “Vanishing gradient

problem” — hard to train
many layers.

AN
NS

/
>
S

* Now in “Deep Learning
Renaissance”

[Forbes/Google]

|. Better training: techniques and tools (e.g. smarter NN structures).

2. Better hardware: multicore, GPUs, bigger data centers, cloud
computing, coming: neuromorphic computing.

3. More training: bigger datasets, search, the internet, open science.

Ryan Reece (UCSC) 43



Deep learning future?

Google ImageNet DNN future of ATLAS?
competition example

1.12 woman
0.28 n

1.23 white
|.45 dress
0.06 standing
-0.13 with
3.58 tennis
1.81 racket
0.06 two
0.05 pCUpIL‘

.14 1n

0.30 green
-0.09 behind

-0.14 her

Ryan Reece (UCSC) 44



Natural Kinds?

* Seems like the possible uniqueness of the latent space representations
(the features discovered by DNNs) says something interesting about
the issue of natural kinds, how to carve nature at its joints.

» Opposite sentiments shared by:

Bensusan, H. (Sussex) (2014). What can inductive machines suggest about the
realism debate!?

Hennig, C. (UCL) (2015). What are the true clusters?

* What do results in machine translation [ =
say about arguments for the
inscrutability of reference?

Google Neural English
Machine Translation

Japanese

Japanese

» “Zero-Shot Translation with Google’s Korean

Korean

Multilingual Neural Machine Translation
System” https://research.googleblog.com/2016/| | /zero-shot-translation-with-googles.html

* | doubt one could rename-away the Higgs field, for example, being the
only scalar field in the Standard Model.
» My thoughts after reading: Button and Walsh. (2015). “Ideas and Results in Model Theory:

Reference, Realism, Structure and Categoricity”. arxiv:1501.00472.
Ryan Reece (UCSC)
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Summary

Particle physics probes very deep questions about what the world is made of, how
it works, and how it got here.

QFT is arguably the most impressive reductionist framework in science.

Unlike previous eras of parts of physics seeming “near complete”, QFT should be
viewed as an Effective Field Theory.

Experimental particle physics has consistently pushed the bounds of computing, and
lead the big-data explosion until the 2000s.

Physicists have learned to statistically justify their claims, and have often lead in
developing statistical theory and methods.

There are arguably Natural Kind characterizations of the degrees of freedom in
nature, non-arbitrary choices in modeling the data.

Realist cases can be made for the Standard Model, atoms, genes etc. despite what
theory changes come in other regimes (structural realism, rainforest realism,

Ladyman & Ross (2007) Every Thing Must Go).

Discoveries in particle physics have the potential to explain the existence of dark
matter and reveal details about the early universe.

Machine learning is revolutionizing how induction can be automized.What does ML
say about the realism debate!

Ryan Reece (UCSC)
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* Deep learning does best
with raw data and when
there are unexploited

Deep Learning in HEP

features.

°* raw C

* basic

nannels —tagging

Kinematics — features

@ Baldi et al. (2014). Searching for Exotic Particles

in High-Energy Physics with Deep Learning. [1402.4735]

challenge

Hi99sI the HiggsML challenge

May to September 2014

When High Energy Physics meets Machine Learning

Baldi et al. (2015). Enhanced Higgs to TT~
Search with Deep Learning. [1410.3469]

@® Aurisano et al. (2016). A Convolutional Neural

40..-.-"'1._
o

v, CC interaction.

20

40 60 80
Plane

100

80

Network Neutrino Event Classifier. [|1604.01444]

@ Santos et al. (2016). Machine learning
techniques in searches for tth in the

h—'bb decay channel. [1610. 03088]

v, CC interaction.

20

40 60 80
Plane

out performs NOvA’s conventional reconstruction

Ryan Reece (UCSC)

i - 338K Training Events
g 0.9 — —
2 =
w ‘_ -
T 0.8:
0.7~ -
0.6 .
0.5 -
0.4 —
0.3 :_ K g Classifier & Input Features _:
L ,«- = NeuroBGD 2x15, All Features (AUC=0.800) m
0.2F —— Random Forest, All Features (AUC=0.784) .
100 . Neu oBay s, Top 200 F atures (AUC=0.777)
Naive Ba y s, All Featur (AUC 0.715)
0.1 De c ion e, All Features (AUC=0.623) ]
I /. Neares t Nelghbor, All Features (AUC=0.599) ]
O‘-’I"Illllllllllll|IIII|IIII|IIII|IIII|IIII|IIII|IIII:
0O 01 02 03 04 05 06 07 08 09 1
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Naturalness or multiverse?

"o 42 [0 \
Higgs mass and vacuum stability V((I)) :u PP+ A (DD
in the Standard Model at NNLO 180 = <O T VA

Giuseppe Degrassi?, Stefano Di Vita®, Joan Elias-Miré®’, José R. Espinosa” ,> B Instabi]ity . — -

Gian F. Giudice?, Gino Isidori?¢, Alessandro Strumia%”"

[E—
|
()

“If the LHC finds Higgs couplings
deviating from the SM prediction
and new degrees of freedom at
the TeV scale, then the most

/.

O
150 Hs 3\@\

170 -~

Pole top mass M, in Ge

100 |- Stability

important question will be to s 120 125 o el
see if a consistent and natural e ey
(in the technical sense) explanation of EW breaking emerges from

experimental data. But if the LHC discovers that the Higgs boson is not
accompanied by any new physics, then it will be much harder for theorists to
unveil the underlying organizing principles of nature. The multiverse, although
being a stimulating physical concept, is discouragingly difficult to test from an
empirical point of view. The measurement of the Higgs mass may provide a
precious handle to gather some indirect information.”

Ryan Reece (UCSC) [al”Xi\/i |205-6497:| 49



Gauge invariance is deep!

Why do gauge theories work? Q ‘ Iocal U(1) phase
Internal gauge Space

Spacetime

* Loyalty to the gauge prlnC|pIe Q Q C

motivated the Higgs mechanism. (3 Q Q

* Some have described gauge freedom as a @
“redundancy of description”. Q

* But it is also a symmetry, similar to spatial rotations but in
the internal space of the field.

* Can be rotated locally, independently at every spacetime point.

* What does it mean for the laws of nature to be describable by the
continuous symmetries of Lie groups!?

* What does it mean that the state of the universe can be represented as

an element of a complex vector space, a Hilbert space!?
Ryan Reece (UCSC)
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The SM is over constrained

1000 L DL B | [T T T T ] 11010 T ]
I, 0.4 R Rq (10) - :
--------- Z pole asymmetries (10) - -
500 - M, (10) . -
..... — direct m, (10) ! et
300 direct M, o ///:
200| B precision data (90%) :' / ‘-;‘)f
= ) -
Q
S, 100} _
L B -
= - i
50 | —
| e L I -
30 .. / | -
L / .
20 |- / | -
/ |
/ |

10 I 1 1 1 1 I 1 1 1 /I 1 1 1 /I 1 1 1 1 I 1 I!I L I 1 1 1 1 | 1 | - —
150 155 160 165 170 175 180 185

m, [GeV]
Ryan Reece (UCSC) [PDG 2016] 51




Datasets

The LHC has performed extremely well!!

Recently broke inst. lumi.
records > 103 cm%s”!

1
]
w
o

I I I I I I I [y I

ATLAS Online Luminosity f
2011 pp Ys=7TeV |
= 2012 pp Vs=8TeV
m— 2015 pp s=13TeV
e 2016 pp Vs =13 TeV

N
9]

—
9)
lIII|IIlI|IIII|IIII|IIlI|IIII

Delivered Luminosity [fb’
N
(-

llllll|llll|lllllllll

10
: 2015: 3.2/fb 13
e : Ty, |caII 20- 40 verticies
yor Ao 3ol ock ypically

Month in Year per bunch crossing

Latest analyses combine collision data at +/s=13TeV collected in the years
2015 and 2016, giving a total integrated lumi = [3-15 fb-!.

Ryan Reece (UCSC) 52



Computing infrastructure
‘ Generation of raw data

b" Tier O Reconstruction
| e 7 -~ 15 PB/year .

Calibration and alignment
‘ . . . [ (Re)reconstruction j

Organized analysis

. Monte Carlo production
~100k CPUs Tier 2s User analysis

_ ntuples listograms
Tier-3 at UCSC
~200 CPUs
event event
skimming and selection and
corrections plotting

Ryan Reece (UCSC) 53



Matrix element

Hard-scatter matrix elements are calculated from a perturbative
sum of Feynman graphs.

“ET R R 2
2(p+ p+
M =3\ v Bt e
jet | R Y
The strong force further complicates things by
confining quarks in hadrons. Theorists and Monte
Carlo simulations factor the problem:

* “Parton Distribution Functions” (PDFs) SR
e ‘“‘Hard-scatter’” matrix element generato.l.;:f_ff!:; |

e ‘“Parton shower”,
Bremsstrahlung,
Initial/final-state radiation

e ‘“Hadronization”
Ryan Reece (UCSC)



Symmetry-first physics

“Why do we enumerate possible theories by giving their
Lagrangians rather than by writing down Hamiltonians?! ... that
symmetries imply the existence of Lie algebras of suitable
quantum operators, and you need these Lie algebras to make
§ sensible quantum theories. ... if you start with a Lorentz invariant
Lagrangian density then because of Noether’s theorem the
Lorentz invariance of the S-matrix is automatic.”

Weinberg, S. (1996).What is quantum field theory, and what did we think it is?

= QFT is naturally relativistic if one requires that the Poincaré

algebra be satisfied.

Ryan Reece (UCSC) 55



Effective Field Theories

» energy and large distances looks Lorentz invariant and satisfies the
8 cluster decomposition principle will also at sufficiently low energy
look like a quantum field theory. ...

This leads us to the idea of effective field theories. When you
? use quantum field theory to study low-energy phenomena, then
according to the folk theorem you're not really making any
assumption that could be wrong, unless of course Lorentz
invariance or quantum mechanics or cluster decomposition is
wrong, provided you don’t say specifically what the Lagrangian is.
As long as you let it be the most general possible Lagrangian
consistent with the symmetries of the theory, you're simply writing

%9

down the most general theory you could possibly write down.

Weinberg, S. (1996).What is quantum field theory, and what did we think it is?
= QFT is a way of parametrizing effective, local degrees of freedom.

Ryan Reece (UCSC) 56



Data science workflow

Data science done well looks easy dgfter your data is clean.

|. Define the question of interest
SM and BSM physics B HEP/ATLAS equivalent

2. Get the data

dqg2/rucio, Globus GridFTP :
Data cleaning can

be a significant
bart of the

4. Explore the data ana[ysis eﬁbrt!
ROOT, event loops, histograms

3. Clean and correct the data
GRLs, CP tools, RootCore, SUSY Tools, QuickAna

5. Fit statistical models
RooFit, RooStats, HistFitter, CLs/Bayesian methods

6. Communicate the results
talks, notes, publications, axiv

/. Make your analysis reproducible
CDS, SVN, HEPData, RECAST

taken from: http://simplystatistics.org/20[5/03/1 //data-science-done-well-looks-easy-and-that-is-a-
big-problem-for-data-scientists/
Ryan Reece (UCSC) 57



http://simplystatistics.org/2015/03/17/data-science-done-well-looks-easy-and-that-is-a-big-problem-for-data-scientists/

