Diving into Deep Learning with keras using your ntuples

Ryan Reece (UCSC)

ryan.reece@cern.ch

tutorial envisioned and designed by Amir Farbin (UTA)

I'm not an expert

- I'm just starting to learn this stuff too. I'm an enabler.
- I guess I've drank the coolaid, or I am interested enough to evangelize some because I think we, physics experimentalists, should think more about what is happening in ML *right now*.
- I am also skeptical about how quickly physicsts will adapt to new techniques, as we are careful and good at reconstruction/ analysis. But the gains could be important.
- In addition to Amir Farbin, I've learned a lot from David Rousseau and Michael Kagan, who run the new ML group in ATLAS. We had a workshop last March that brought a lot of this to my attention:

https://indico.cern.ch/event/483999/

Computing setup

- We are following the tutorial here: <u>https://twiki.cern.ch/twiki/bin/view/AtlasComputing/</u> <u>SoftwareTutorialDeepLearning</u>
- Got to the Setup on Ixplus section and add to the PATH and source activate to setup my (Ryan's) installation on afs.
- You can follow the Installation instructions to install the full environment on your own machines on your own time.
- Try running the test out of the box: python -m EventClassificationDNN.Experiment --cpu
- Assuming that is ok for you, let's pause the walkthrough on the twiki to finish the introduction to DL in these slides. Then back to the TWiki.

Neural Nets

Neural nets have:

- input varaiables, x_i
- weights, w_{ij}
- activation function (sigmoid, tanh, ...), u_j
- output variables, y_j
- a *learning rule* to update the weights.
- a learning step is called an "epoch."
- Optimizing the weights is called "training."

Ryan Reece (UCSC)

"Deep" networks have multiple hidden layers

Can be used for classification or regression.

Similar to other multivariate techniques, cutting on a classifier makes some acceptance blob in parameter space.

Boosted Decision Trees (BDT)

4

NNs and BDTs in ATLAS

ATLAS pixel clustering with NNs

- Using NNs and other MVAs has been common in HEP for years, for pattern recognition, particle ID, event selection...
- In the past, always used shallow NNs.
- ATLAS uses NNs in many places, e.g. pixel clustering.
- Jet tagging for taus and bquarks has used NNs in many iterations (also c, q/g).

ATLAS tau identification with BDTs

Why go deep?

- "Vanishing gradient problem" → hard to train many layers.
- Multiple layers allow for *feature extraction*.
- Allow us to better explore and understand our data.
- Now in "Deep Learning Renaissance"

- I. <u>Better training</u>: techniques and tools (e.g. smarter NN structures).
- 2. <u>Better hardware</u>: multicore, GPUs, bigger data centers, cloud computing, coming: neuromorphic computing.
- 3. More training: bigger datasets, search, the internet, open science.

Examples of CNNs

- In 1990s, Yann LeCun pioneered Convolutional Neural Nets (CNN) and used them for Optical Character Recognition.
- Inspired by animal cortex.
- Now it is standard in image recognition and captioning, NLP, computer vision, etc.

Pigou et al. (2014). Sign Language Recognition using Convolutional Neural Networks.

Deep Learning in HEP

- Deep learning does best with raw data and when there are unexploited features.
- raw channels \rightarrow tagging
- basic kinematics \rightarrow features

 Baldi et al. (2014). Searching for Exotic Particles in High-Energy Physics with Deep Learning. [1402.4735]

Higgs \mathbf{H} the Higgs Mag to September 2014 When High Energy Physics meets Machine Learning Baldi et al. (2015). Enhanced Higgs to $\tau^+\tau^-$

Search with Deep Learning. [1410.3469]

Aurisano et al. (2016). A Convolutional Neural Network Neutrino Event Classifier. [1604.01444]

Santos et al. (2016). Machine learning techniques in searches for tth in the h→bb decay channel. [1610.03088]

Ryan Reece (UCSC)

8

Deep learn from raw inputs

The vision as explained to me by Amir:

ImageNet competition example

Future of ATLAS?

Solutions to big problems in ATLAS?

- Discover new features in the data and analysis techniques?
- Better particle and event classification?
- Faster, better pattern recognition and tracking for HL-LHC?
- Faster, better, data-driven simulations from generative models?

Data Science & Deep Learning Tools

• scipy

- matplotlib common plotting library
- numpy arrays and numerics in python
- pandas library for reading/writing/plotting structured data
- scikit-learn various ML and classification packages for python
- tensorflow/theano computer algebra systems designed for machine learning
- keras python ML framework wrapping calls to tensorflow or theano backends.

Amir's DLKit

- DLKit is Amir's toolkit built around keras for handling datasets/ models/results. As you learn keras, you'd probably build something like it.
- In the top-level file: DLKit/EventClassificationDNN/Experiment.py
 # Build the Model

from EventClassificationDNN.Classification import FullyConnectedClassification

• The Build function actually constructs the NN using keras:

Amir's DLKit

- You need to convert TTrees to hdf5.
- Specify your input files in

EventClassificationDNN/InputFiles.py

• The lines like:

[InputData, "AA_Gen"], are labeling InputData as being of true class "AA_Gen"

Goal: discriminate A-type from B-type decays.

This example developed by Chris Rogan and Amir Farbin.

Amir's DLKit

• Also specify the input variables from your data in:

EventClassificationDNN/InputVars.py

- The list FieldGroups groups together variables of common normalizations, like 0-1, -π--+π, energies, etc.
- SelectedFields selects which variables to use as input to the NNs. You can change these with:
 -v --varset e.g. -v 0 (everything)
 -v 1 ("jigsaw")
 -v 2 (four-vectors)
- Also note the file EventClassificationDNN/ScanConfig.py which is meant to sample the depth/width structure of the NN for study and optimization.
- Running the Experiment should also run Analysis.
 which makes some ROC plots and could be further customized.

ROC curve (area = 0.79) ROC curve (area = 0.79)

0.2

0.4

False Positive Rate

Back-up slides

ATLAS Detector

ATLAS is a 7 story tall, 100 megapixel "camera", taking 3-D pictures of protonproton collisions 40 million times per second, saving 10 million GB of data per year, using a world-wide computing grid with over 100,000 CPUs. The collaboration involves more than 3000 scientists and engineers.

Datasets

Recently broke inst. lumi. records > 10^{34} cm⁻²s⁻¹

Typically 20-40 verticies per bunch crossing

Latest analyses combine collision data at $\sqrt{s}=13$ TeV collected in the years 2015 and 2016, giving a total integrated lumi $\approx 13-15$ fb⁻¹.

What do we reconstruct?

jet

т-jet

muons

(main objects)

Exotics

Z',*W*', ...

- electrons & photons
- jets of hadrons
- T- and b-tagged jets
- missing energy

How do we search?

ATLAS Physics Groups

SMHiggsSUSYW, Z, top,... $H \rightarrow \gamma \gamma, ZZ, WW, ...$ $I+jets, \gamma+jets, ...$

Currently ATLAS has published 579+ papers

Building a model

- N(expected) = N(correct-ID) + N(fake)
- <u>Bottom-up</u>

Ryan Re

- well-identified objects have scale factors from control regions
- estimated with detailed Monte Carlo simulation

 various magic with data depending on the analysis and your creativity

<u>Top-down</u>, "data-driven"

- side-band fit
- fake-factor method

Bottom-up Monte Carlo

> **Data-driven** side-band fit

> > [arxiv:1110.3174]

Tau Reconstruction

- Tau candidates are seeded by anti-kt calorimeter jets (R=0.4) formed from topological clusters with local hadronic calib.
- Tracks are matched to this calorimeter object and discrimianting variables calculated from the combined tracking+calo information.
- Best vertex chosen from those matching tracks in core cone $\Delta R < 0.2$.
- Core track with $\Delta R < 0.2$ associated to the tau.
- Annulus $0.2 < \Delta R < 0.4$ used to calculate tracking and calorimeter isolation variables.
- New in Run-2: π⁰ counting using strips in EM calorimeter and subtracting charged energy matched to tracks. Improves jet rejection and energy resolution.

