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I’m not an expert

* I'm just starting to learn this stuff too. I’'m an enabler.

* | guess I've drank the coolaid, or | am interested enough to
evangelize some because | think we, physics experimentalists,
should think more about what is happening in ML right now.

* | am also skeptical about how quickly physicsts will adapt to
new techniques, as we are careful and good at reconstruction/
analysis. But the gains could be important.

* |n addition to Amir Farbin, I've learned a lot from David
Rousseau and Michael Kagan, who run the new ML group in
ATLAS. We had a workshop last March that brought a lot of

this to my attention:
https://indico.cern.ch/event/483999/
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Computing setup

* We are following the tutorial here:

https://twiki.cern.ch/twiki/bin/view/AtlasComputing/
SoftwareTutorialDeepl.earning

* Got to the Setup on Ixplus section and add to the PATH and
source activate to setup my (Ryan’s) installation on afs.

* You can follow the Installation instructions to install the full
environment on your own machines on your own time.

* Try running the test out of the box:
python -m EventClassificationDNN.Experiment --cpu

* Assuming that is ok for you, let’s pause the walkthrough on

the twiki to finish the introduction to DL in these slides.
Then back to the TWiki.
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Neural Nets

RSE X Ss

Input layer Hidden layer

X > Yi

Neural nets have:

input varaiables, x;
weights, wij;

activation function
(sigmoid, tanh, ...), y;

output variables, y;

a learning rule to update
the weights.

a learning step is called an
“epoch.”

Optimizing the weights is
called “training.”
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“Deep” networks have
multiple hidden layers

hidden layer 1 hidden layer 2 hidden layer 3

output layer

Can be used for classification or regression.

Similar to other multivariate techniques,
cutting on a classifier makes some
acceptance blob in parameter space.

Boosted Decision Trees (BDT)

1| Y>a?

‘y Jes

X>b? 3| X>c?
Yes y Yes

4.1 Y>d?
e 5| X>e?
(®)

2.
No




NNs and BDTs in ATLAS

ATLAS pixel clustering with NN
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Why go deep!?

* “Vanishing gradient

problem” — hard to train
many layers.

* Multiple layers allow for
feature extraction.

* Allow us to better explore
and understand our data.

* Now in “Deep
Learning Renaissance™

[Forbes/Google]

|. Better training: techniques and tools (e.g. smarter NN structures).

2. Better hardware: multicore, GPUs, bigger data centers, cloud
computing, coming: neuromorphic computing.

3. More training: bigger datasets, search, the internet, open science.
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Examples of CNNs

* In 1990s,Yann LeCun pioneered
Convolutional Neural Nets (CNN)
and used them for Optical Character
Recognition.

* Inspired by animal cortex.

* Now it is standard in image
recognition and captioning, NLP,
computer vision, etc.
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Pigou et al. (2014). Sign Language Recognition
using Convolutional Neural Networks.
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Deep Learning in HEP

@ Baldi et al. (2014). Searching for Exotic Particles
. in High-Energy Physics with Deep Learning. [1402.4735
with raw data and when 8 & T P & | ]

there are unexploited Higgslﬂ the Higgle chq"enge

features. challenge

* Deep learning does best

May to September 2014

* raw channels— tagging When High Energy Physics meets Machine Learning

Baldi et al. (2015). Enhanced Higgs to T°T~
Search with Deep Learning. [1410.3469]

@ Santos et al. (2016). Machine learning

* basic kinematics— features

@ Aurisano et al. (2016). A Convolutional Neural techniques in searches for tth in the
Network Neutrino Event Classifier. [1604.01444] h—>bb decay channel. [1610. O3088]

80 ‘ ‘ ‘ ‘ 80 5 - 338K Training Events g

70} . i ] Jol . . T 09f =
v, CC interaction. v, CC interaction. s
60} . 60l T 0.8:— -
50 1 sof : ~ o7 E
30| % . 3ofl:'.-"'- . : 0.5;— _i
20 20} & 0.4 ' E
10 10 0.3 K d Classifier & Input Features _f
| | | ‘ - L« —— NeuroBGD 2x15, All Features (AUC=0.800)
0o 20 20 60 80 100 % 20 40 60 80 100 0.2 _E dogja)'/: sTL;f\goFOFtat (QL(JACJg?c?‘;)m =
Plane Plane Naive Ba y s, All Features (AUC=0.715)

’ H : 0.1 ll:\)legregt Nei hblglrl FA|| }:eatu&:su 8\[?062032599) =
out performs NOvA’s conventional reconstruction o T Nt Alfeauies G0
O IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

0O 01 02 03 04 05 06 07 08 09 1

R)’an Reece (UCSC) tt Background Eff.



Deep learn from raw inputs

The vision as explained to me by Amir:

ImageNeF Future of ATLAS!?
competition example
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Solutions to big problems in ATLAS?

* Discover new features in the data and analysis techniques!?
* Better particle and event classification?
* Faster, better pattern recognition and tracking for HL-LHC?

* Faster, better, data-driven simulations from generative models!?
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Data Science & Deep Learning Tools

* scipy

» matplotlib - common plotting library
» numpy - arrays and numerics in python

» pandas - library for reading/writing/plotting structured data

* scikit-learn - various ML and classification packages for
python

* tensorflow/theano - computer algebra systems designed
for machine learning

* keras - python ML framework wrapping calls to tensorflow or
theano backends.
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Amir’s DLKit

* DLKit is Amir’s toolkit built around keras for handling datasets/
models/results. As you learn keras, you'd probably build
something like it.

* In the top-level file:
DLKit/EventClassificationDNN/Experiment.py

# Build the Model
from EventClassificationDNN.Classification import FullyConnectedClassification

* The Build function actually constructs the NN using keras:

def Build(self) :
model = Sequential ()
model .add (Dense (self.width,
input dim=self.N input, input layer
init=self.init))
model .add (Activation('tanh'))
for i in xrange (0,self.depth):
model .add (BatchNormalization())
model .add (Dense (self.width,init=self.init))
model .add (Activation('tanh'))
model .add (Dropout (0.5) )
model .add (Dense (1,input dim=self.width))
self .Model=model
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Amir’s DLKit

* You need to convert T Trees to hdfb.

* Specify your input files in

EventClassificationDNN/InputFiles.py

* The lines like:
[InputData, "AA Gen"],
are labeling InputData as being of true class “AA_Gen”

Goal: discriminate  A-type from  B-type decays.
b-jet

b-jet

This example developed by Chris Rogan and Amir Farbin.
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Amir’s DLKit

* Also specify the input variables from your data in:

EventClassificationDNN/InputVars.py

* The list FieldGroups groups together variables of common

normalizations, like O- 1, -TT--+TT, energies, etc.

 SelectedFields selects which variables to use as input to the

NNs. You can change these with:
-v --varseteg -v 0 (everything)
-v 1 (“jigsaw”)
-v 2 (four-vectors)

* Also note the file EventclassificationDNN/ScanConfig.py

which is meant to sample the depth/width
structure of the NN for study and optimization.

* Running the Experiment should also run Analysis.éb;'

1.0+

0.8

some ROC plots and could be further customized./
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ATLAS Detector

ATLAS is a 7 story tall, 100 megapixel “camera”, taking 3-D pictures of proton-
proton collisions 40 million times per second, saving 10 million GB of data per
year, using a world-wide computing grid with over 100,000 CPUs. The
collaboration involves more than 3000 scientists and engineers.
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Datasets

The LHC has performed extremely well!!  Recently broke inst. lumi.

—— . records > 103* cm™2s!

ATLAS Online Luminosity f
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Latest analyses combine collision data at +/s=13TeV collected in the years
2015 and 2016, giving a total integrated lumi = [3-15 fb-!.
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What do we reconstruct?

’J ® Mmuons (main ObjeCtS)

* electrons & photons

* jets of hadrons
* T-and b-tagged jets

®* missing energy

\ How do we search?

ATLAS Physics Groups

SUSY Exotics
[+jets,Y+jets, ... LW, ..

Currently ATLAS has published 579+ papers
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Building a model

N(expected) = N(correct-ID) + N(fake
(expected) = N(correct-ID) + N(fake)

 Bottom-up « Top-down , “data-driven”
* well-identified objects * various magic with data
have scale factors from depending on the analysis and
control regions your creativity

e estimated with detailed e side-band fit

Monte Carlo simulation
- 2000meererrrrrrrirrr— . * fake-factor method
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Tau Reconstruction

* Tau candidates are seeded by anti-k;
calorimeter jets (R=0.4) formed from Vv
topological clusters with local hadronic

jet cone

calib. ~_ / o

e Tracks are matched to this calorimeter 1-CONE aNE 1
object and discrimianting variables '
calculated from the combined tracking+calo
information.

* Best vertex chosen from those matching
tracks in core cone AR<O0.2.

e Core track with AR<0.2 associated to the
tau.

* Annulus 0.2<AR<0.4 used to calculate
tracking and calorimeter isolation variables.

* New in Run-2: Tt° counting using strips in EM
calorimeter and subtracting charged energy
matched to tracks. Improves jet rejection
and energy resolution.
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