ATLAS searches for heavy Higgs bosons and supersymmetry using tau decays

Ryan Reece

ryan.reece@cern.ch

on behalf of the ATLAS Collaboration

September 23, 2016

Outline

- Motivational questions about the SM
- ATLAS detector and dataset
- Neutral Higgs: $A/H \rightarrow \tau \tau$
- Charged Higgs: $H^{\pm} \rightarrow \tau^{\pm} v$
- SUSY searches
- Summary

... all with taus.

Unanswered problems in particle physics

Ryan Reece (UCSC)

Supersymmetry

- **Supersymmetry** (SUSY) is a symmetry between bosons and fermions. $S_{SUSY} = |S_{SM} - \frac{1}{2}|$ Can be seen as spacetime having fermionic dimensions.
- According to the **HLS theorem** (Haag-Lopuszanski-Sohnius, 1975), under some basic assumptions, SUSY is the unique exception to the Coleman-Mandula theorem, being *the only way* to nontrivially extend the Poincaré group to include internal degrees of freedom.
- Experimental hints from the running of the SM couplings with SUSY partners included point at possible **gauge unification**.
- In *R*-parity conserving models, the Lightest Supersymmetric Particle (LSP) provides a possible **dark matter candidate**.

ATLAS Detector

ATLAS is a 7 story tall, 100 megapixel "camera", taking 3-D pictures of protonproton collisions 40 million times per second, saving 10 million GB of data per year, using a world-wide computing grid with over 100,000 CPUs. The collaboration involves more than 3000 scientists and engineers.

Datasets

Recently broke inst. lumi. records > 10^{34} cm⁻²s⁻¹

Typically 20-40 verticies per bunch crossing

Analyses discussed here combine collision data at $\sqrt{s=13\text{TeV}}$ collected in the years 2015 and 2016, giving a total integrated lumi $\approx 13-15$ fb⁻¹.

Tau Reconstruction

- Tau candidates are seeded by anti-kt calorimeter jets (R=0.4) formed from topological clusters with local hadronic calib.
- Tracks are matched to this calorimeter object and discrimianting variables calculated from the combined tracking+calo information.
- Best vertex chosen from those matching tracks in core cone $\Delta R < 0.2$.
- Core track with $\Delta R < 0.2$ associated to the tau.
- Annulus $0.2 < \Delta R < 0.4$ used to calculate tracking and calorimeter isolation variables.
- New in Run-2: π⁰ counting using strips in EM calorimeter and subtracting charged energy matched to tracks. Improves jet rejection and energy resolution.

Ryan Reece (UCSC)

➡ See talk on ATLAS tau reco by Cristina Galea on Wed Sept 21.

jet

$t\bar{t} ightarrow b\bar{b}(\mu u)(au_{ m h} u)$ candidate

Neutral Higgs

$A/H \rightarrow TT$ search

- 2HDM, five spin-0 states: CP-even h and H, CP-odd A, CP-even H[±]
- Defining Higgs sector of MSSM. $\tan \beta \equiv v_u/v_d$
- Dataset: \approx I3.3 fb⁻¹ at \sqrt{s} =I3 TeV (3.2 fb⁻¹ from 2015 and 10.1 fb⁻¹ from 2016)
- Improvement on the limits from the 2015 result submitted to EPJC [arix:1608.00890].
- Five signal regions: $(I\tau_h, \tau_h\tau_h) \otimes (b \text{-tag/no}) \oplus \text{high-MET } I\tau_h$

[ATLAS-CONF-2016-085]

10

Ryan Reece (UCSC)

$A/H \rightarrow TT$ search

Event selection

• *I***T***h* **channel**:

single lepton triggers, $p_T(e/\mu) > 30$ GeV offline and isolated, use MET trigger for MET > 150 GeV, medium T_h (eff 55%) with $p_T > 25$ GeV, opposite charges, no more leptons, $\Delta \phi(\tau_h, e/\mu) > 2.4,$ $m_T(e/\mu, MET) < 40$ GeV (reject W+jets) veto m_{vis}(e, τ_h)= 80-110 GeV (reject $Z \rightarrow ee$) b-tag (eff 77%) or no-btag.

• **T**_h**T**_h **channel**:

single T_h triggers, $p_T(T_h) > 80$ GeV or 110 GeV (run dependent), medium T_h (eff 55%) with $p_T > 140$ GeV, loose (60%) 2nd T_h with $p_T > 55$ GeV, opposite charges, no leptons, $\Delta \varphi(T_{h1}, T_{h2}) > 2.7$, b-tag (eff 77%) or no b-tag.

Background estimation

- Sensitivity to jet shapes makes MC modeling of the rates of jets-faking taus poor. Jets-faking taus are data-driven with the *fake-factor method*, weighting taus in data that failed ID by a fake factor measured in fake-rich control regions.
- Other backgrounds from $Z \rightarrow \tau \tau$, *tt*, and others are estimated with MC (with appropriate scale-factors), checked in validation regions.

Ryan Reece (UCSC)

[ATLAS-CONF-2016-085] II

$A/H \rightarrow TT$ search

- Set limits on the m_h^{mod+} and hMSSM benchmark models.
- In both cases, exclude tan $\beta \ge 10$ for $m_A \approx 200-400$ GeV, tan $\beta \ge 25-35$ for $m_A \approx 1$ TeV @ 95% CL.

Charged Higgs

• 2HDM, five spin-0 states:

CP-even h and H, CP-odd A, CP-even H^{\pm}

- Produced through top decays: $t^{\pm} \rightarrow bH^{\pm}$ (for $m_{H^+} < m_t$)
- For tan $\beta > 2$ and $m_{H^+} < m_t$, $H^{\pm} \rightarrow \tau^{\pm} \nu$ dominant decay

Ryan Reece (UCSC)

[ATLAS-CONF-2016-088] 16

Charged Higgs

Charged Higgs

- $\sigma \times BR \leq 2 \text{ pb for } m_{H\pm}$ = 200 GeV, $\sigma \times BR \leq 8 \text{ fb for } 2 \text{ TeV} @ 95\% \text{ CL}$
- Excludes tan $\beta \gtrsim 40-60$ for $m_{H\pm} = 200-600$ GeV @ 95% CL.
- Updates previous result with only 2015 data [arxiv:1603.09203].

Ryan Reece (UCSC)

Why SUSY again?

Why SUSY?

- alleviates the EW hierarchy problem
- could explain dark matter
- allows for gauge unification

Challenges:

- more than 100 parameters in general
- theoretically attractive, but experimentally challenging to untangle
- collider phenomenology dominated by the type of NLSP, how it is produced and decays.
- Third generation especially important for EW naturalness.
- Tau motivation: interesting possibilities with stau NLSP.
 Ryan Reece (UCSC)

Run-2 advantage:

- increasing √s from 8 to 13 TeV significantly opens up possiblities for SUSY production!
- two SUSY searches discussed here use 13.2 and 14.8 fb⁻¹ of data at 13 TeV from 2015+2016.

Stop to stau search

Event selection

- single lepton triggers
- I p_T(e/µ) > 25 GeV offline and isolated
- I medium τ_h (eff 55%) with p_T > 70 GeV,
- opposite charges, no more leptons,
- 2 jets p_T > 50, 20 GeV, at least 1 b-tag (eff 77%),
- $M_{VS} = 10^3$ > $M_{VS} = 13$ Preliminary Data Total SM tt (fake τ) tt + V single top Z + jets
- $m_{\overline{4}, \tau_1}^{\underline{2}} \approx 10^{\circ} \text{ GeV}$ • $m_{\overline{4}, \tau_1}^{\underline{2}} \approx 10^{\circ} \text{ GeV}$
- $m_{T2}^{2} = \min_{\vec{q}_{1} + \vec{q}_{2} = \vec{E}_{T}^{\text{miss}}} \left[\max \left\{ m_{T}^{2}(\vec{p}_{1}, \vec{q}_{1}), m_{T}^{2}(\vec{p}_{2}, \vec{q}_{2}) \right\} \right]$ $\leq M^{2} \left(\text{Visible-invisible pair} \right)$

Background estimation

- estimated with MC normalized in control regions
- separate GRs for W+jets, and ttbar, with and without a fake hadronic tau. $p_T(\tau)$ [GeV]

Ryan
$$\sum_{a \to a} 10^{3}$$

Stop to stau search

- Motivated by GMSB with natural gauge mediation (nGM) \Rightarrow only 3 light sparticles: stop, stau, nearly massless gravitino.
- Excludes stop masses ≤ 600-870 GeV @ 95% CL depending on stau mass.
- Significantly extends the previous Run-1 limit. Ryan Reece (UCSC)

EW SUSY ditau search

p

Event selection

- ditau + MET trigger
- at least 2 medium T_h (eff 55%) with *p*_T > 50/40/20 GeV,
- at least 2 of which have opposite charges,
- MET > 150 GeV,

EW SUSY ditau search

24

Summary

- ATLAS has extended many exclusions for new physics.
- Unification and supersymmetry remain hidden.
- "Robust regions of the MSSM parameter space, compatible with the results of direct and indirect searches for supersymmetry, remain unconstrained."
 -- Howie Haber, PDG 2015 SUSY

Review, Part I

 The Higgs sector and the third generation will continue to be interesting probes for new physics.

Ryan Reece (UCSC)

• Tension in EW naturalness can continue to grow, or expose something new.

Naturalness

Savas Dimopoulos CERN colloquium 2012

Technicolo

References

- Search for $A/H \rightarrow \tau \tau$, 13.3 fb⁻¹, [ATLAS-CONF-2016-085]
- Search for $H^{\pm} \rightarrow \tau^{\pm} v$, 13.7 fb⁻¹, [ATLAS-CONF-2016-088]
- Search for top-squark pair production with taus, I3.2 fb⁻¹ [ATLAS-CONF-2016-048]
- Search for electroweak production of SUSY with taus, 14.8 fb⁻¹, [ATLAS-CONF-2016-093]

Back-up slides

Large Hadron Collider

- p-p collisions at $\sqrt{s} = 7-13$ TeV
- inst. luminosity = 10³²-10³⁴ cm⁻²s⁻¹
- 27 km circumference
- I232 dipoles: I5 m, 8.3 T
- I00 tons liquid He, I.9 K

- ~10¹¹ protons / bunch
- ~1000 bunches/ beam
- 40 MHz , 25 ns bunch spacing
- I-40 interactions / crossing
- ~10⁹ interactions / sec

Geneva, Switzerland

What do we reconstruct?

jet

т-jet

muons

(main objects)

Exotics

Z',*W*', ...

- electrons & photons
- jets of hadrons
- T- and b-tagged jets
- missing energy

How do we search?

ATLAS Physics Groups

SMHiggsSUSYW, Z, top,... $H \rightarrow \gamma \gamma, ZZ, WW, ...$ $I + jets, \gamma + jets, ...$

Currently ATLAS has published 579+ papers

Building a model

- N(expected) = N(correct-ID) + N(fake)
- <u>Bottom-up</u>

Ryan Re

- well-identified objects have scale factors from control regions
- estimated with detailed Monte Carlo simulation

 various magic with data depending on the analysis and your creativity

<u>Top-down</u>, "data-driven"

- side-band fit
- fake-factor method

Bottom-up Monte Carlo

> **Data-driven** side-band fit

> > [arxiv:1110.3174]

31

MSSM benchmarks

- The $m_{\rm h}^{\rm max}$ scenario: This scenario can be used to derive conservative lower bounds on $M_{\rm A}$, $M_{\rm H^{\pm}}$ and $\tan \beta$ [648].

$$M_{\rm SUSY} = 1000 \text{ GeV}, \mu = 200 \text{ GeV}, M_2 = 200 \text{ GeV},$$

$$X_{\rm t}^{\rm OS} = 2 M_{\rm SUSY} \text{ (FD calculation)}, X_{\rm t}^{\rm \overline{MS}} = \sqrt{6} M_{\rm SUSY} \text{ (RG calculation)},$$

$$A_{\rm b} = A_{\tau} = A_{\rm t}, M_{\tilde{g}} = 1500 \text{ GeV}, M_{\tilde{l}_3} = 1000 \text{ GeV}.$$
(361)

- The $m_{\rm h}^{\rm mod}$ scenario:

Departing from the parameter configuration that maximizes $M_{\rm h}$, one naturally finds scenarios where in the decoupling region the value of $M_{\rm h}$ is close to the observed mass of the signal over a wide region of the parameter space. A convenient way of modifying the $m_{\rm h}^{\rm max}$ scenario in this way is to reduce the amount of mixing in the stop sector, i.e. to reduce $|X_{\rm t}/M_{\rm SUSY}|$ compared to the value of ≈ 2 (FD calculation) that gives rise to the largest positive contribution to $M_{\rm h}$ from the radiative corrections. This can be done for both signs of $X_{\rm t}$.

$$m_{\rm h}^{\rm mod+}: \quad M_{\rm SUSY} = 1000 \text{ GeV}, \mu = 200 \text{ GeV}, M_2 = 200 \text{ GeV},$$
$$X_{\rm t}^{\rm OS} = 1.5 M_{\rm SUSY} \text{ (FD calculation)}, X_{\rm t}^{\rm \overline{MS}} = 1.6 M_{\rm SUSY} \text{ (RG calculation)},$$
$$A_{\rm b} = A_{\tau} = A_{\rm t}, M_{\rm \tilde{g}} = 1500 \text{ GeV}, M_{\rm \tilde{l}_3} = 1000 \text{ GeV}.$$
(362)

$$m_{\rm h}^{\rm mod-}: \quad M_{\rm SUSY} = 1000 \text{ GeV}, \mu = 200 \text{ GeV}, M_2 = 200 \text{ GeV},$$
$$X_{\rm t}^{\rm OS} = -1.9 M_{\rm SUSY} \text{ (FD calculation)}, X_{\rm t}^{\rm \overline{MS}} = -2.2 M_{\rm SUSY} \text{ (RG calculation)},$$
$$A_{\rm b} = A_{\tau} = A_{\rm t}, M_{\rm \widetilde{g}} = 1500 \text{ GeV}, M_{\tilde{l}_3} = 1000 \text{ GeV}. \qquad (363)$$
$$\text{[arxiv: | 307.| 347]}$$

32

Ryan Reece (UCSC)

What's a tau?

jet

3-prong T_h

- Only lepton massive enough to decay hadronically (1.8 GeV).
- 65% hadronic
 50% I-prong, I5% 3-prong.
- Decay in beam pipe: $cT \approx 87 \mu m$.
- <u>Signature</u>: narrow jet with I or 3 tracks, possibly additional EM clusters from π⁰s.
- <u>Challenge</u>: large multijet background at hadron colliders.
- Importance: can have preferred couplings to new physics:

SM $H \rightarrow \tau\tau, H^+ \rightarrow \tau^+\nu, Z' \rightarrow \tau\tau,$ high-tan β SUSY,...