Hadronic tau decays in ATLAS

a review of the tau object reconstructed and supported by ATLAS and its current status

Ryan Reece

University of Pennsylvania

ryan.reece@cern.ch

Chicago 2012 Workshop on LHC Physics, The University of Chicago

November 13, 2012

Outline

Hadronic tau decays in ATLAS...

1. Introduction

motivation, dataset, *pile-up*

2. Reconstruction

seeding, vertex choice, track selection

3. Identification

jet and electron discriminants, performance

- 4. Triggering tau chain, VBF triggers
- 5. Systematic uncertainties

efficiency and energy scale measurements

Themes:

- Focus on current issues
- Adapting to luminosity increases
- Pile-up robustness
- Improving systematics with additional data

Introduction

What's a tau?

- Only lepton massive enough to decay hadronically.
- Decay in beam pipe: $c\tau \approx 87 \ \mu m$
- 65% hadronic
 50% 1-prong, 15% 3-prong.
- **Signature:** narrow jet with 1 or 3 tracks, possibly additional EM clusters.
- Challenge: large multijet background at hadron colliders.
- Importance: often preferred coupling to new physics (SM $H \rightarrow \tau \tau$, $H^+ \rightarrow \tau^+ \nu$, $Z' \rightarrow \tau \tau$, high-tan β SUSY...)

Ryan Reece (Penn)

5

Timeline of taus at ATLAS

- Nov 2010: Obs. of $W \rightarrow \tau \nu$
- Feb 2011: Obs. of $Z \rightarrow \tau \tau$
- July 2011: $W \rightarrow \tau \nu$ and $Z \rightarrow \tau \tau$ cross section measurements
- Feb 2012: $Z \rightarrow \tau \tau$ cross section with 1.5 fb⁻¹.
- June 2012: SM $H \rightarrow \tau \tau$ excluded 3-4×SM at $m_H \approx 125$ GeV [arXiv:1206.5971]
- Several other analyses: MSSM $H \rightarrow \tau \tau$, $t\bar{t}$ with τ , $H^+ \rightarrow \tau \nu$, $Z' \rightarrow \tau \tau$, SUSY τ +MET, ...

• Now eagerly waiting to see if $H \rightarrow \tau \tau$ will be excluded at 1×SM this year?

Pile-up

120

100

80

60

40

20

0^L

5

10

15

20

25

- 1-40 pile-up interactions / crossing
- The additional tracks and clusters
 Mean Number of Interactions per Crossing

 from pile-up are especially challenging for tau identification, which
 discriminates hadronic tau decays from jets with isolation-related
 track and calorimeter quantities.
- Efforts in 2011→2012 involved re-defining or adding corrections to identification variables to be more robust against the increasing pile-up.

Ryan Reece (Penn)

ATLAS Online Luminosity

 $\sqrt{s} = 8 \text{ TeV}, \int \text{Ldt} = 14.0 \text{ fb}^{-1}, \langle u \rangle = 20.0$ $\sqrt{s} = 7 \text{ TeV}, \int \text{Ldt} = 5.2 \text{ fb}^{-1}, \langle u \rangle = 9.1$

30

35

40

Reconstruction

Reconstruction

- Seeded by anti-k_t jets (R=0.4) of
 3-D topological calorimeter clusters.
- 2. **Define the four-momentum** as the jet-axis with a tau-specific calibration.
- 3. **Associate tracks** with the jet that are consistent with the chosen vertex.
- 4. **Calculate discriminating variables** from the combined calorimeter and tracking information, later used to identify hadronic tau decays with BDT and likelihood based discriminants.

Tau vertex association

Tau track selection

- $p_{\rm T} > 1 \text{ GeV}$,
- Number of pixel hits ≥ 2 ,
- Number of pixel hits + number of SCT hits ≥ 7 ,
- $|d_0| < 1.0 \text{ mm},$
- $|z_0 \sin \theta| < 1.5 \text{ mm},$

- The d_0 and z_0 requirements depend on the choice of vertex.
- Beginning in 2012, choose the vertex with the highest JVF for that tau candidate.

Track selection efficiency

- In 2011, the track selection for tau candidates cut on the d_0 and z_0 with respect to the vertex with the highest $\sum p_T^2$.
- Selecting the vertex with the highest JVF recovers efficiency in high pile-up (Tau Jet Vertex Association).

Ryan Reece (Penn)

[ATLAS-CONF-2012-142] 11

Identification

Identification and pile-up

13

Pile-up robust variables

Pile-up corrections

• Also beginning in 2012, the variables with the largest pile-up dependence $(f_{core} \text{ and } f_{track})$ are corrected with terms that are linear in the number of reconstructed vertices.

$$f_{\text{core}} = \frac{\sum_{\{\Delta R < 0.1\}} E_{\text{T}}^{\text{EM}}(\text{cell})}{\sum_{\{\Delta R < 0.2\}} E_{\text{T}}^{\text{EM}}(\text{cell})} + (0.3\%/\text{vertex}) \times N(\text{vertex})$$

15

Tight/Medium/Loose working points of the BDT and LLH are defined
 (≈40%, 60%, 70% efficient), optimized as function of p_T and in separate N(vertex) categories.

Electron veto

- Electrons provide a track and calorimeter deposit that can fake hadronic tau decay identification.
- ATLAS provides a BDT to discriminate electrons from tau candidates, even after removing overlaps with selected electrons.
- Tight/Medium/Loose working points are defined ($\approx 75\%$, 85%, 95% efficient).
- In 2012, the BDT is being reoptimized to have better efficiency at high- p_{T} .

Ryan Reece (Penn)

[ATLAS-CONF-2011-152, ATLAS-CONF-2012-142]

Triggering

Tau triggering

1. Level 1: (latency 2.5 μs)

Coarse EM+Had calorimeter trigger towers $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$. Candidate passing thresholds on the sum of energies:

- 1. highest 2×1 towers
- 2. surrounding 4×4 isolation ring
- 2. Level 2: (latency 40 ms)

Fast tracking. Region-of-interest (RoI) calculation of track- and calorimeter-based ID variables. Similar selection to offline cutbased ID.

3. Event Filter: (latency 4 s)

Beginning in 2012, started using the offline BDT algorithm at the EF trigger.

Ryan Reece (Penn)

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TauTriggerPublicResults

L2 pile-up robustness

Example improvements to variable definitions to lessen sensitivity to pile-up:

- Smaller ΔR cone for calculating EM radius 0.4 \rightarrow 0.2
- Select tracks within $\Delta z < 2 \text{ mm}$ of the highest- p_T track within the RoI (cannot vertex at L2).

Ryan Reece (Penn)

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TauTriggerPublicResults

VBF triggers

- New VBF triggers *relax tau identification* required at L2 and the EF by adding requirements for forward jets.
- This increases the control sample of tau candidates that will fail identification, used to estimate the fake contribution.
- Being evaluated for the $H \rightarrow \tau \tau \rightarrow lep + \tau_{had}$ search.

Ryan Reece (Penn)

q'(jet)

(iet

₩/Z

 $\tau_{\rm had} + e$

tau20Ti medium1 e18vh medium1

e18vh medium1 vbf 2L1TAU11I EM14VH

2 L2 jets $p_T > 15$ GeV, $|\Delta \eta| > 2.5$

 $M_{\rm ii} > 400 \,\,{\rm GeV}$

 $\tau_{had} + \mu$

2 EF jets $p_{\rm T}$ > 25 GeV, $|\Delta \eta|$ > 2.8,

Systematic Uncertainties

Identification efficiency

- **Tag-and-probe:** selecting a sample of a known composition without some ID, so one can probe its efficiency.
- For the case of tau ID, select $Z \rightarrow \tau \tau \rightarrow \mu \tau_h 3\nu$ by triggering on the muon and selecting events with muon + tau candidate.

 Scale factor ≈ 1, known to a few percent, 2-3% (1-prong), 5-6% multi-prong.

Trigger efficiency

- The same $Z \rightarrow \tau \tau \rightarrow \mu \tau_h 3\nu$ tag-and-probe sample is used to measure the efficiency of the tau triggers.
- Known to O(5%) in the turn-on.
- Efficiency Improving with EF_tau20_medium1 09 0.8 statistics in 2012. 0.7 0.6 0.5 **ATLAS** Preliminary 0.4 $\int dt L = 1.0 \text{ fb}^{-1}, \sqrt{s} = 7 \text{ TeV}$ 0.3 — Data 0.2E 7→ττ 0.1E $\epsilon_{\text{Data}}/\epsilon_{\text{MC}}$ 1.2 0.8 70 0 10 20 30 40 50 60 80 90 100 $p_{\tau}(\tau)$ [GeV]

Electron veto fake rate

 Probe the *e*-veto efficiency after removing overlap with selected electrons.

data/MC scale factor and uncertainty	
from $Z \rightarrow ee$ tag-and-probe with 2.6/fb from 2011	

electron BDT veto	$ \eta_{\rm trk} < 1.37$	$1.37 < \eta_{\rm trk} < 1.52$	$1.52 < \eta_{\rm trk} < 2.00$	$ \eta_{\rm trk} > 2.00$
loose	0.96 ± 0.22	0.8±0.3	0.47 ± 0.14	1.7 ± 0.4
medium	1.3 ±0.5	-	0.5 ± 0.4	2.8 ± 1.3

- Statistically limited by the sample that pass the veto, giving uncertainties \approx 50-100%.
- Improving with the data added in 2012. Ryan Reece (Penn)

[ATLAS-CONF-2012-142] 24

Energy scale

- Tau candidates are first brought from the EM to the Jet Energy Scale with LC calibration of the clusters within $\Delta R < 0.2$ (from 0.4 to be pile-up robust).
- Then response functions are calibrated with tau Monte Carlo to make final corrections of a few percent.
- Uncertainties are determined by smearing the Monte Carlo truth according the tau decays true composition, using uncertainties constrained by single particle response measurements (CTB, E/p, $Z \rightarrow ee/\pi^0$ -resp.) Ryan Reece (Penn) [ATLAS-CONF-2012-054] 25

Energy scale cross check

- Tau energy scale is manually shifted in the modeling.
- Median of the visible mass peak is used to decide which scale matches the data.
- Toy experiments are used to estimate the uncertainty.

$ \eta $	best scale	uncert.
0.0-0.8	-1.5%	3.3%
0.8-2.5	+1.5%	2.8%

- Scale consistent with 1 within singleparticle-response uncertainties $\approx 3\%$.
- May become primary method with more data.

[ATLAS-CONF-2012-054] 26

Conclusions

- The rise of pile-up in 2011 challenged the performance of tau identification and triggering.
- Efforts in multiple areas (identification, triggering, energy calibration) have mitigated the effects of pile-up with better design choices or corrections.
- The future will bring opportunities to further shrink our scale factor uncertainties with additionally analyzed 2012 data.
- It is an exciting time to analyze tau final states at ATLAS.

Back up

Phenomenology of tau decays

$ au^- ightarrow$	$e^- \overline{ u}_e u_{ au}$	17.8%	$\Big]$
	$\mu^- ar{ u}_\mu u_ au$	17.4%	ieptonic 55.270
	$\pi^- \pi^0 u_ au$	25.5%	
	$\pi^- u_{ au}$	10.9%	
	$\pi^- 2\pi^0 \ u_{ au}$	9.3%	1 prong 49.5%
	$K^{-} \left(N \pi^{0} ight) \left(N K^{0} ight) u_{ au}$	1.5%	
	$\pi^- 3\pi^0 \nu_{ au}$	1.0%	J
	$\pi^- \pi^- \pi^+ u_ au$	9.0%	$\frac{1}{2}$ propg 15.9%
	$\pi^ \pi^ \pi^+$ π^0 $ u_ au$	4.6%	$\int 3 \text{ prolig } 13.270$

Current tau identification variables

8. Maximum ΔR between jet-axis and core tracks

*has pile-up correction term linear in N(vertex) Ryan Reece (Penn)

tauRec

Seeds of reconstruction

Once upon a time, there were two tau reconstruction algorithms.

- 1. **tauRec** seeded by $p_T > 10$ GeV anti- k_T 0.4 topo-jets. "calo-seeded"
- 2. tau1p3p seeded by
 p_T > 6 GeV inner
 detector tracks.
 "track-seeded"

2009

Since virtually all candidates have a calo-seed, we effectively merged the variable calculation of both algorithms, using only calo-seeds.

"Performance of the tau reconstruction and identification algorithm with 14.2.20 and mc08" [ATL-COM-PHYS-2009-229] Ryan Reece (Penn)

Early MV identification

• Jet-tau discrimination

Prefers narrow calorimeter jets, likelihood-based discriminant.

• Electron-tau discrimination

	IsEle(%)			IsEle_eg(%)		
Candidate	Overall	1P	3P	Overall	1P	3P
$ au$ from W $\rightarrow au v$	93.2	92.7	95.3	99.8	99.8	99.8
$ au$ form $A \rightarrow au au$	93.3	92.5	96.3	99.9	98.8	99.5
Electron form $W \rightarrow ev$	2.8	2.4	0.1	14.8	13.4	0.3
Electron form $A \rightarrow \tau \tau$	5.9	4.5	0.5	18.0	15.8	0.8

Early sub-structure studies

- Monte Carlo based substructure studies
- Cell-based shower-shape subtraction π^0 reconstruction.
- Still unvalidated with data.

First data

- First comparisons of background distributions and the QCD fake-rate between data and Monte Carlo.
- Already see that MC over-estimates the jet fake-rate. $\Rightarrow k_W \approx 0.5$ "Reconstruction of hadronic tau candidates in QCD events at ATLAS with 7 TeV pp collisions" [ATLAS-CONF-2010-059] "Tau Reconstruction and Identification Performance in ATLAS" [ATLAS-CONF-2010-086] 35

Tau discriminants

b

Х

• Cuts

 $p_{\rm T}$ -parametrized cuts on $R_{\rm EM}$ and $R_{\rm track}$, and a cut on $f_{\rm track}$.

Projective likelihood

$$d = \ln\left(\frac{L_S}{L_B}\right) = \sum_{i=1}^N \ln\left(\frac{p_i^S(x_i)}{p_i^B(x_i)}\right)$$

В

S

Maturing of discriminants

- Cuts are pt-parametrized to account for the Lorentz collimation of boosted taus.
- Experience grows with LLH and BDT discriminants, which become the preferred discriminants in 2011.

"Reconstruction, Energy Calibration, and Identification of Hadronically Decaying Tau Leptons in the ATLAS Experiment" [ATLAS-CONF-2011-077, ATL-PHYS-INT-2011-068]

Seeing first hadronic taus

2010

- Nov 2010: Observation of $W \rightarrow \tau_h \nu$ [ATLAS-CONF-2010-097]
- Feb 2011: Observation of $Z \rightarrow \tau_h \tau_l$ [ATLAS-CONF-2011-010]

$W \rightarrow \tau \nu$ cross section

$$\sigma(W \to \tau \nu) = 11.1 \pm 0.3 (\text{stat.}) \pm 1.7 (\text{sys.}) \pm 0.4 (\text{lumi.}) \text{ nb}$$

2010

 $\sigma_{\rm theory} = 10.46 \pm 0.52 \text{ nb}$ at NNLO

Dominant systematics

- $\tau_{\rm h}$ efficiency 10.3%
- $\tau_{\rm h}$ energy scale 8.0%
- $\tau_{\rm h}$ + MET trigger efficiency 7.0%
- Iuminosity 3.4%
- acceptance 2.3%

"Measurement of the $W \rightarrow \tau \nu$ cross section in pp collisions at sqrt(s)= 7 TeV with the ATLAS experiment" [arXiv:1108.4101]

$Z \rightarrow \tau \tau$ cross section

2011

 $\sigma_{\rm combined} = 0.97 \pm 0.07 ({\rm stat.}) \pm 0.07 ({\rm sys.}) \pm 0.03 ({\rm lumi.})$ nb

 $\sigma_{\rm theory} = 0.96 \pm 0.05 \ {\rm nb}$ at NNLO

Dominant systematics

- $\tau_{\rm h}$ energy scale 11%
- $\tau_{\rm h}$ efficiency 8.6%
- μ efficiency 8.6%
- e efficiency 3-10%
- acceptance 3%
- luminosity 3.4%

"Measurement of the $Z \rightarrow \tau \tau$ cross section in pp collisions at sqrt(s)= 7 TeV with the ATLAS detector" [arXiv:1108.2016]

Observed variance in fake-rates

BDTMedium)

- Divide the issue into two questions:
 - 1. Why do quarks and gluons have different tau fake-rates?

2. How does the quark/gluon fraction vary among samples?

Jet width for quark/gluons

Why do quarks and gluons have different tau fake-rates?

- $\Psi(r) =$ fraction of jet energy within $\Delta R < r$.
- Quark jets are more narrow than gluon jets of the same energy.
- Tau identification prefers narrow candidates.

 $\Psi(r=0.1)$ for 200 GeV Jets

• This is consistent with samples of quark-enriched jets, like *W*+jet, having higher fake-rates.

J. Gallicchio, M. Schwartz. "Quark and Gluon Tagging at the LHC". arXiv:1106.3076.

OS vs SS W+jet

How does the quark/gluon fraction vary among samples?

Leading order W+jet production:

- The charge of the quark should correlate with the reconstructed charge of the tau candidate, therefore (a) and (b) preferably produce opposite sign W+jet events.
- OS and SS will have different quark/gluon fractions.

Madgraph predicted Quark/Gluon

J. Gallicchio, M. Schwartz. "Pure Samples of Quark and Gluon Jets at the LHC". arXiv:1104.1175

CMS Tau ID

Hadronic decays dominantly to 1 or 3

• τ_h reco seeded by calorimeter jets

Ryan Reece (Penn)

- associate tracks in $\Delta R < 0.2$, select 1 or 3
- combine calorimeter and tracking information in a BDT or likelihood discriminant, preferring narrow clustering, hadronic activity
- particle-flow reconstructs constituent 4-vectors
- au_h reco seeded by particle-flow hadrons
- Hadron Plus Strip (HPS) algorithm for counting $\pi^0 s$
- isolation cone for rejecting QCD jets

[ATLAS-CONF-2011-152, CMS PAS TAU-11-001] 46

CMS Particle Flow

- Matches track to clusters to form charged and neutral PF objects.
- PF objects are used as input for all CMS tau reconstruction.

CMS: Hadron Plus Strip (HPS)


```
Build all possible taus
that have a 'tau-like'multiplicity
from the seed jet
\pi^+
\pi^+ \pi^0
\pi^+ \pi^+ \pi^-
```

tau that is 'most isolated' with compatible m_{vis} is the final tau candidate associated to the seed jet

Discrimination with calorimeter based isolation $\Delta R < 0.5$.

[CMS PAS TAU-11-001]

CMS: Tau Neural Classifier (TaNC)

- Uses a *shrinking core-cone*:
 - $\Delta R(\text{photons}) < 0.15$ for photons
 - $\Delta R(\text{charged}) < (5 \text{ GeV})/E_{T}$ for charged hadrons
 - $\Delta R(\text{charged}) < \Delta R(\text{isolation}) < 0.5$

Decay mode	Resonance	Mass (MeV/ c^2)	Branching fraction (%)
$ au^- o h^- u_ au$			11.6%
$ au^- o h^- \pi^0 u_ au$	$ ho^-$	770	26.0%
$ au^- o h^- \pi^0 \pi^0 u_ au$	a_1^-	1200	9.5%
$ au^- o h^- h^+ h^- u_ au$	a_1^-	1200	9.8%
$ au^- o h^- h^+ h^- \pi^0 u_ au$			4.8%

• Dedicated Neural-net classifier for each decay mode [CMS PAS TAU-11-001]

CMS Performance

Not trivial to
 compare ATLAS and
 CMS tau
 performance because
 we bin fake-rates in
 N(track) instead of
 categorizing the
 decay mode.

CMS decay mode ID

Calorimeter granularity

ATLAS

- *B* = 2.0 T
- $\Delta \eta \times \Delta \phi =$ 0.025×0.0245
- R = 0.4 anti- k_T topo-jets

CMS

- *B* = 3.8 T
- $\Delta\eta \times \Delta\phi = 0.0174 \times 0.0174$
- R = 0.5 anti- k_T PF-jets

ATLAS Barrel EM Calorimeter

Granularity could fundamentally limit our capacity to reconstruct sub-structure / π^0 s.

The LHC, ATLAS, and CMS

Datasets

Overall view of the LHC experiments.

Ryan Reece (Penn)

Each experiment has:

- 3000 scientists
- 170+ institutions
- tracking, calorimetry, muon spec.
- 100 M readout channels
- 1 MB/event written at 500 Hz

CMS

- O(10) pb of data/year/exp.
- world-wide grid computing

References

Charged Higgs

• ATLAS

• "Search for charged Higgs bosons decaying via $H^{\pm} \rightarrow \tau^{\pm}\nu$ in tr events using pp collision data at $\sqrt{s} = 7$ TeV with the ATLAS detector" [arxiv:1204.2760]

• CMS

• "Search for a light charged Higgs boson in top quark decays in pp collisions at $\sqrt{s} = 7$ TeV" [arvix:1205.5736]

SUSY

• ATLAS

- "Search for events with large missing transverse momentum, jets, and at least two tau leptons in 7 TeV proton-proton collision data with the ATLAS detector" [arxiv: 1203.6580]
- "Search for supersymmetry with jets, missing transverse momentum and at least one hadronically decaying τ lepton in proton-proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector" [arxiv:1204.3852]
- CMS
 - "Search for anomalous production of multilepton events in pp collisions at $\sqrt{s} = 7$ TeV" [arvix:1204.5341]
 - "Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy" [arxiv:1205.6615]
 - "Search for new physics in events with opposite-sign leptons, jets, and missing transverse energy in pp collisions at $\sqrt{s} = 7$ TeV" [arxiv:1206.3949]

Exotics

• ATLAS

- "A search for high-mass resonances decaying to $\tau^+\tau^-$ in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector" [ATLAS-CONF-2012-067]
- CMS
 - "Search for high-mass resonances decaying into τ -lepton pairs in pp collisions at $\sqrt{s} = 7$ TeV" [arvix:1206.1725]
 - "Search for pair production of third generation leptoquarks and stops that decay to a tau and a b quark" [CMS PAS EXO-12-002]

Tau performance

• ATLAS

- "Reconstruction, Energy Calibration, and Identification of Hadronically Decaying Tau Leptons" [ATLAS-CONF-2011-077]
- "Performance of the Reconstruction and Identification of Hadronic Tau Decays with ATLAS" [ATLAS-CONF-2011-152]
- " $Z \rightarrow \tau \tau$ cross section measurement in proton-proton collisions at 7 TeV with the ATLAS experiment" [ATLAS-CONF-2012-006]
- <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TauPublicCollisionResults</u>
- <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TauTriggerPublicResults</u>

Tau performance

- CMS
 - "Performance of τ -lepton reconstruction and identification in CMS" [arvix:1109.6034, CMS PAS TAU-11-001]
 - "CMS Strategies for tau reconstruction and identification using particle-flow techniques" [CMS PAS PFT-08-001]
 - "Particle–Flow Event Reconstruction in CMS and Performance for Jets, Taus, and E_{T}^{miss} " [CMS PAS PFT-09-001]
 - "Commissioning of the Particle-Flow Reconstruction in Minimum-Bias and Jet Events from pp Collisions at 7 TeV" [CMS PAS PFT-10-002]
 - "Commissioning of the particle-flow event reconstruction with leptons from J/Psi and W decays at 7 TeV" [CMS PAS PFT-10-003]
 - "Study of tau reconstruction algorithms using pp collisions data collected at $\sqrt{s} = 7$ TeV" [CMS PAS PFT-10-004]