
pyframe
A light-weight Python framework for analyzing

ROOT ntuples in ATLAS

Ryan Reece
University of Pennsylvania

Physics Analysis Tools Meeting, CERN September 21, 2011

ryan.reece@cern.ch

What is this framework?

1. No EDM

2. Flat data

3. But treat objects like objects

4. Blackboard pattern for sharing data among algorithms

5. Easy addition of user data

6. Be fast, enough
2

pyframe is a light-weight python framework for analyzing
ROOT ntuples in ATLAS. It allows you to read virtually
any kind of flat ntuples in python, quickly, and in a minimal
framework that can scale in complexity to include several
algorithms and tools. It’s design goals are:

1. No EDM
• Eliminate the need of a user to maintain classes

describing the entire content of the data.

• Variables are accessed dynamically, on-demand.

• Of course the execution will halt if you try to access a
variable that doesn't exist, but you aren't responsible
for knowing more about the data than you ask of it.

• If you don’t read a variable, it can’t hurt you.

• No MakeClass. No ReaderMaker.

3

2. Flat data
• Data formats in active experiments are subject to change. pyframe

makes no assumptions about the kind of data you want to analyze
except:

1. Your trees are flat, meaning that they are not filled with rich, user-
defined types. The branches are basic types, arrays, or std::vectors.

2. Groups of variables that represent the attributes of a common
class of objects, should have a common prefix in their branch
names, for example:
int el_n;
std::vector<float> el_eta;
std::vector<float> el_phi;
std::vector<float> el_pt;

• pyframe was designed with the use case of reading ATLAS D3PDs in
mind, but there is no reason you can't read any flat ntuple with
common branch prefixes.

4

3. But treat objects like objects
• Flat data has the huge advantages that it is easy

to inspect and there is no schema evolution.

• But our problems in high energy physics really
are object oriented.

• pyframe benefits from assuming flat data
(D3PDs), but allows you to group related
variables into objects that behave as if they were
a class; objects that can be collected, filtered,
and sorted.

• This goal is realized with the VarProxy class.
5

VarProxy
• A VarProxy internally holds a reference to the tree being read, a string

prefix, and an integer index.

• It has its __getattribute__ method overridden such that when one calls
 p.pt it returns tree.el_pt[1]

• You can build a list of VarProxies for all the electrons in your tree with
the build_var_proxies function:
electrons = pyframe.core.build_var_proxies(chain, chain.el_n,
 prefix='el_')
Building lists of VarProxies with a common prefix and saving the collection in the
store dictionary is made more user friendly with the ListBuilder algorithm shown later.

• Now you can pt-sort the electrons
electrons.sort(lambda x, y: cmp(x.pt, y.pt), reverse=True)

• and treat each instance as if it were an instance of a class with members
pt, eta, etc.
el = electrons[0]
el.pt

6

4. Blackboard pattern for data sharing among
algorithms

• A pyframe job executes a list of algorithms in
order, for each event in the data.

• Like the Gaudi framework's StoreGate, pyframe
allows algorithms to share data with each
other by storing any event-level derived data in
the store dictionary, which can later be
retrieved by any subsequent algorithms.

• There is also a hists dictionary, with the only
difference that it is not cleared event-by-event,
but store is cleared.

7

5. Easy addition of user data

• In the course of data analysis, one should be
able to calculate new object-level derived
quantities and associate them to the object.

• Python's ability to dynamically set any object's
attributes makes attaching new variables to
objects trivial:
 p.my_new_var = 11.0

8

6. Be fast, enough
• Being written in python, pyframe's design favors the

programmer's time and sanity, over the CPU. But of
course your analysis needs to be quick enough to
sample the data effectively.

• pyframe has been designed with event processing rates
(per 2-3 GHz core) of 100 Hz being considered
sufficienct and 1 kHz being preferred. My analysis
currently runs at 400 Hz.

• Processing lots of data should be done in parallel.
pyframe has been designed for easy parallelization
using Python's standard module multiprocessing, or
by submitting jobs to a batch system.

9

Selectors
• pyframe has modules for each object type: egamma,

muon, tau, jet, met.
electron_selector = \
 pyframe.egamma.ElectronSelector(
 allowed_authors = [1, 3],
 min_pt = 15.0*GeV,
 allowed_etas = [(-2.47, -1.52),
 (-1.37, 1.37),(1.52, 2.47)],
 flags = ['tightWithTrack'])

• Each selector inherits from a base selector that uses
Python’s built-in filter. Each selector just has to
implement a select function that returns True/
False.

10

Configuring an EventLoop
• One adds algorithms to an EventLoop:

loop = pyframe.core.EventLoop('myloop')
loop += pyframe.grl.GRLFilter(config['grl'])
loop += pyframe.algs.ListBuilder(
 prefixes = ['vxp_'],
 keys = ['all_vertices'],
)
loop += \
 pyframe.selectors.SelectorAlg('VertexSelectorAlg',
 selector = vxp_primary_selector,
 key_in='all_vertices',
 key_out='primary_vertices',
)
...
loop.run(chain, 0, config['max_events'])

11

Turning Off Branches with TreeProxy

• O(10) speed improvements can be achieved by simply
turning off branches that are not read in the analysis.

• The TreeProxy class makes this easy by logging every
variable that is read, and optionally dumping the list
to a file.

• When running an EventLoop, one can configure to
dump the variable log, and/or select which branches to
turn on by:
loop.run(chain, 0, config['max_events'],
 branches_on_file = config.get('branches_on_file'),
 do_var_log = config.get('do_var_log'),
)

12

Profile your analysis as you develop

• A pyframe EventLoop automatically monitors
the execution time for each algorithm.

• A report of the the time used is dumped at the
end of the job:
ALGORITHM TIME SUMMARY
 # ALGORITHM TIME [s] RATE [kHz]
 0 MCEventWeight 0 31.3
 1 GRLFilter 0 30.9
 2 ListBuilder 0 10.5
 3 PrimaryVertexSelectorAlg 8 3.67
...

13

Parallelization
• On a multicore machine, one can make use of Python’s

multiprocessing module just by supplying a command
line argument specifying how many cores to use:
 ./job.py -p 4
This gives functionality similar to PROOF-lite, with
pure python.

• On a cluster, I’ve been running Condor jobs easily. You
just need Python and ROOT on all the worker nodes.

• pyutils/condor.py is a module I wrote for dividing
up the input files and generating condor submission
scripts.

14

Installation
• Requirements:

• Python 2.6

• ROOT

• SVN

• Instructions and documentation:

• https://twiki.cern.ch/twiki/bin/view/Sandbox/PyFrame

• checkout pyframe and pyutils

• add to your PYTHONPATH

• only thing to compile is external packages using RootCore

• has a helloworld that runs out of the box
15

https://twiki.cern.ch/twiki/bin/view/Sandbox/PyFrame
https://twiki.cern.ch/twiki/bin/view/Sandbox/PyFrame

pyframe summary
• Pure python framework for reading flat ntuples

• VarProxy allows you to treat related variables like
objects, without maintaining classes.

• Parallelization with multiprocessing and condor.

• Uses RootCore to use external tools and ATLAS
recommendations.

• Get the full advantage of Python
• clean syntax
• duck typing

• string formatting
• standard modules
• garbage collection (no memory leaks) 16

My workflow
• x.D3PD.root

 → tree_trimmer.py → x.skim.root
 → pyframe → x.hist.root
 → metaroot → x.canv.root
 → root2html.py → www

• tree_trimmer.py is a general python script for skimming events and dropping branches.

• pyframe is used to make an event loop for filling histograms.

• metaroot is a python package for formatting histograms, producing a file of TCanvases.

• root2html.py is a general script that generates an html document of figures with
captions with detailed statistics from any ROOT file of TCanvases. Some example
output:

• ditau analysis:
https://reece.web.cern.ch/reece/share/ditau.tau-mu.2011-09-05/

• tau performance studies:
https://reece.web.cern.ch/reece/share/plot_vars/

• TRT performance studies:
https://reece.web.cern.ch/reece/share/trt_eff.data_182787.mc_J2/

17

https://reece.web.cern.ch/reece/share/ditau.tau-mu.2011-09-05/
https://reece.web.cern.ch/reece/share/ditau.tau-mu.2011-09-05/
https://reece.web.cern.ch/reece/share/plot_vars/
https://reece.web.cern.ch/reece/share/plot_vars/
https://reece.web.cern.ch/reece/share/trt_eff.data_182787.mc_J2/
https://reece.web.cern.ch/reece/share/trt_eff.data_182787.mc_J2/

More info
• tree_trimmer.py

https://svnweb.cern.ch/trac/penn/browser/reece/rel/
tree_trimmer/trunk

• pyframe
https://twiki.cern.ch/twiki/bin/view/Sandbox/PyFrame

• metaroot
https://svnweb.cern.ch/trac/penn/browser/reece/rel/
metaroot/trunk

• root2html.py
https://svnweb.cern.ch/trac/penn/browser/reece/rel/
root2html/trunk

18

https://svnweb.cern.ch/trac/penn/browser/reece/rel/tree_trimmer/trunk
https://svnweb.cern.ch/trac/penn/browser/reece/rel/tree_trimmer/trunk
https://svnweb.cern.ch/trac/penn/browser/reece/rel/tree_trimmer/trunk
https://svnweb.cern.ch/trac/penn/browser/reece/rel/tree_trimmer/trunk
https://twiki.cern.ch/twiki/bin/view/Sandbox/PyFrame
https://twiki.cern.ch/twiki/bin/view/Sandbox/PyFrame
https://svnweb.cern.ch/trac/penn/browser/reece/rel/metaroot/trunk
https://svnweb.cern.ch/trac/penn/browser/reece/rel/metaroot/trunk
https://svnweb.cern.ch/trac/penn/browser/reece/rel/metaroot/trunk
https://svnweb.cern.ch/trac/penn/browser/reece/rel/metaroot/trunk
https://svnweb.cern.ch/trac/penn/browser/reece/rel/root2html/trunk
https://svnweb.cern.ch/trac/penn/browser/reece/rel/root2html/trunk
https://svnweb.cern.ch/trac/penn/browser/reece/rel/root2html/trunk
https://svnweb.cern.ch/trac/penn/browser/reece/rel/root2html/trunk

