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SUSY

The Minimal Supersymmetric Standard Model (MSSM) is the
supersymmetric extension to the SM with the simplest Higgs sector,
but otherwise general.

The MSSM has two complex Higgs doublets: Hu and Hd that couple
to up and down type fermions respectively.

After electroweak symmetry breaking, the Higgs fields have two
vacuum expectation values: vu, vd, tanβ ≡ vu/vd.

Symmetry breaking still introduces 3 massless Goldstone bosons.

The other 5 degrees of freedom give 5 Higgs bosons: h,H,A,H±.

137 additional parameters
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CMSSM and NUMH1

CMMSM

The Constrained MSSM (CMSSM) is a subset of possible MSSMs in
which “some universality relations are imposed on the soft
SUSY-breaking parameters,” limiting the number of parameters to a
few. [arXiv:0808.4128v1]

m0 and m1/2 are parameters that set the scale for the masses of the
supersymmetric scalars and gauginos.

NUMH1

Is a generalization of the CMSSM, dropping a universality relation in
the Higgs sector.
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χ2 Fits and Confidence Contours

χ2 =
∑
i

(Ci − Pi)2

σ(Ci)2 + σ(Pi)2

+ χ2(search constraints)

+
∑
i

(fobs
SMi − ffit

SMi)
2

σ(fSMi)2
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We’ll discuss how one goes from the statistic on the left to the plot on the
right.
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Primer on the Maximum Likelihood Method

Consider a Gaussian distributed measurement:

f1(x|µ, σ) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
If we repeat the measurement, the joint PDF is just a product:

f(~x|µ, σ) =
∏
i

f1(xi|µ, σ)

The likelihood function is the same function as the PDF, only thought of
as a function of the parameters, given the data. The experiment is over.

L(µ, σ|~x) = f(~x|µ, σ)

The likelihood principle states that the best estimate of the true
parameters are the values which maximize the likelihood.
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It is often more convenient to consider the log likelihood, which has the
same maximum.

lnL = ln
∏

f1 =
∑

ln f1

=
∑
i

(
−1

2
ln(2πσ2)− (xi − µ)2

2σ2

)
Maximize:

∂ lnL
∂µ

=
∑
i

xi − µ̂
σ2

= 0

⇒
∑
i

(xi − µ̂) = 0, ⇒ µ̂ =
1
N

∑
i

xi = x̄

Which agrees with our intuition that the best estimate of the mean of a
Gaussian is the sample mean.
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Note that in the case of a Gaussian PDF, maximizing likelihood is
equivalent to minimizing χ2.

lnL =
∑
i

(
−1

2
ln(2πσ2)− (x− µ)2

2σ2

)
is maximized when

χ2 =
∑
i

(x− µ)2

σ2

is minimized.

This was a simple example of what statisticians call point estimation.
Now we would like to quantify our error on this estimate.
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One would think that if the likelihood function varies rather slowly near
the peak, then there is a wide range of values of the parameters that are
consistent with the data, and thus the estimate should have a large error.

To see the behavior of the likelihood function near the peak, consider the
Taylor expansion of a general lnL of some parameter θ, near its maximum
likelihood estimate θ̂:

lnL(θ) = lnL(θ̂) +
�
�
�
��>

0
∂ lnL
∂θ

∣∣∣∣
θ̂

(θ − θ̂) +
1
2!

∂2 lnL
∂θ2

∣∣∣∣
θ̂︸ ︷︷ ︸

−1/s2

(θ − θ̂)2 + · · ·

Dropping the remaining terms would imply that

L(θ) = L(θ̂) exp

(
−(θ − θ̂)2

2s2

)

Note that the lnL(θ) is parabolic.
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So if this were a good approximation, we would expect that the variance of
θ̂ would be given by

V [θ̂] ≡ σ2
θ̂

= s2 = −
(
∂2 lnL
∂θ2

∣∣∣∣
θ̂

)−1

It turns out that there is more truth to this than you would think, given by
an important theorem in statistics, the Cramér-Rao Inequality:

V [θ̂] ≥
(

1 +
∂b

∂θ

)2

/E

[
− ∂2 lnL

∂θ2

∣∣∣∣
θ̂

]
An estimator’s efficiency is defined to measure to what extent this
inequality is equivalent:

ε[θ̂] ≡
1/E

[
− ∂2 lnL

∂θ2

∣∣∣
θ̂

]
V [θ̂]
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It can be shown that in the large sample limit:

Maximum likelihood estimators are unbiased and 100% efficient.

Therefore, in principle, one can calculate the variance of an ML estimator
with

V [θ̂] = −
(
E

[
∂2 lnL
∂θ2

∣∣∣∣
θ̂

])−1

Calculating the expectation value would involve an analytic integration
over the PDFs of all our possible measurements, or a Monte Carlo
simulation of it. In practice, one usually uses the observed maximum
likelihood estimate as the expectation.

V [θ̂] = −
(
∂2 lnL
∂θ2

∣∣∣∣
θ̂

)−1
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Let’s go back to our simple example of a Gaussian likelihood to test this
method of calculating the ML estimator’s variance.

V [µ̂] = −

(
∂2 lnL
∂µ2

∣∣∣∣
µ̂

)−1

∂2 lnL
∂µ2

=
∂2

∂µ2

∑
i

(
−1

2
ln(2πσ2)− (xi − µ)2

2σ2

)
=

∂

∂µ

∑
i

xi − µ̂
σ2

=
∑
i

−1
σ2

=
−N
σ2

⇒ V [µ̂] =
σ2

N
⇒ σµ̂ =

σ√
N

Which many of you will recognize as the proper error on the sample mean.
If you are unfamiliar with it, we can actually derive it analytically in this
case.
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V [x̄] = E[x̄2]−��
��*
µ

E[x̄]2

= E

( 1
N

∑
i

xi

) 1
N

∑
j

xj

− µ2

=
1
N2

E

∑
i 6=j

xi xj +
∑
i

x2
i

− µ2

=
1
N2

∑
i 6=j
��

��*
µ2

E[x]2 +
∑
i

E[x2]

− µ2

To find E[x2], consider

V [x] = σ2 = E[x2]− E[x]2 = E[x2]− µ2

⇒ E[x2] = σ2 + µ2
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⇒ V [x̄] =
1
N2

∑
i 6=j

µ2 +
∑
i

(σ2 + µ2)

− µ2

=
1
N2

(
(N2 −N)µ2 +N(σ2 + µ2)

)
− µ2

=
σ2

N

Which verifies the result we got from calculating derivatives of the
likelihood function.

V [θ̂] = −
(
∂2 lnL
∂θ2

∣∣∣∣
θ̂

)−1

In practice, one usually doesn’t calculate this analytically, but instead:

calculates the derivatives numerically, or

uses the ∆ lnL or ∆χ2 method, described now
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Back to our Taylor expansion of lnL:

lnL(θ) = lnL(θ̂) +
1
2!

∂2 lnL
∂θ2

∣∣∣∣
θ̂︸ ︷︷ ︸

−1/σ2
θ̂

(θ − θ̂)2 + · · ·

Let ∆ lnL(θ) ≡ lnL(θ)− lnL(θ̂)

∆ lnL(θ) ' −(θ − θ̂)2

2σ2
θ̂

θ → θ̂ ± nσθ̂

∆ lnL(θ̂ ± nσθ̂) = −
(±nσθ̂)

2

2σ2
θ̂

∆ lnL(θ̂ ± nσθ̂) = −n
2

2
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∆ lnL(θ̂ ± nσθ̂) = −n
2

2

This is the most common definition of the 68% and 95% confidence
intervals:

68%/ 1 σθ̂: ∆ lnL = −1
2

95%/ 2 σθ̂: ∆ lnL = −2
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Recall that in the case that the PDF is Gaussian, the lnL is just the χ2

statistic.

lnL = −χ
2

2
, χ2 =

∑ (x− θ)2

σ2

∆ lnL(θ̂ ± nσθ̂) = lnL(θ̂ ± nσθ̂)− lnLmax = −n
2

2

⇒ −1
2

(
χ2(θ̂ ± nσθ̂)− χ

2
min

)
= −n

2

2

∆χ2(θ̂ ± nσθ̂) = n2

68%/ 1 σθ̂: ∆χ2 = 1
95%/ 2 σθ̂: ∆χ2 = 4
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What if L(θ) is not Gaussian, i.e. lnL(θ) is not parabolic?

Likelihood functions have an invariance property, such that if g(x) is a
monotonic function, then the maximum likelihood estimate of g(θ) is g(θ̂).
In principle, one can find a change of variables function g(θ), for which the
lnL(g(θ)) is parabolic as a function of g(θ). Therefore, using the
invariance of the likelihood function, one can make inferences about a
parameter of a non-Gaussian likelihood function without actually finding
such a transformation [James p. 234].
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[arXiv:0907.5568v1]
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Figure 24. The χ2 functions for Mh in the CMSSM (left) and the NUHM1 (right), including the theoretical
uncertainties (red bands). Also shown is the mass range excluded for a SM-like Higgs boson (yellow
shading), and the ranges theoretically inaccessible in the supersymmetric models studied.

Now you know: 68%/ 1 σθ̂: ∆χ2 = 1, 95%/ 2 σθ̂: ∆χ2 = 4
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Multidimensional case:

Assume ~̂θ is Gaussian distributed.

g(~̂θ|~θ) =
1

(2π)n/2|V|1/2
exp

(
−1

2
Q(~̂θ, ~θ)

)

Q(~̂θ, ~θ) ≡ (~̂θ − ~θ)TV−1(~̂θ − ~θ)

As in the one dimensional case, Q is distributed as a χ2
n, with n degrees of

freedom. The probability that we get a value of Q less than some constant
Qc is

P (Q ≤ Qc) =
∫ Qc

0
dx fn(x) = Fn(Qc) = c

where fn(x) is the PDF of χ2
n, and Fn is its

cumulative distribution.

⇒ Qc = F−1
n (c)

fk(x)
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Qc
c n=1 n=2 n=3

0.683 1.00 2.30 3.53
0.95 3.84 5.99 7.82
0.99 6.63 9.21 11.3

A note about confidence contours/intervals

A 95% confidence contour doesn’t mean that the true value of the
parameter is in the contour with 95% probabilty. That would be a
Bayesian probabilty (a probability of belief). It means that if the model is
correct, we have properly estimated our errors, and if we were to repeat
the experiment over and over again, each time creating a new contour,
then the contour would cover the true parameter in 95% of the
experiments (a frequentist probability).
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CMSSM Contours and Exclusion

jets + MET (CMS)
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Parameter Error Sensitivity
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(g − 2)µ and SUSY
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Figure 5: Generic two-loop diagrams to aµ with a closed chargino/neutralino loop. φ,
ψ denote the scalar particles h, H , A0, H± and G0,±; V denotes the vector bosons γ,
Z, W±; χ̃ stands for the chargino/neutralino mass eigenstates χ̃±1,2, χ̃

0
1,2,3,4.

aexp
µ − atheo

µ = (24.5± 9.0)× 10−10 : 2.7σ [hep-ph/0405255v1]

Ryan D. Reece (Penn) Likelihood Functions for SUSY ryan.reece@cern.ch 23 / 24



References

Buchmueller, O., Cavanaugh, R., Roeck, D., Ellis, R., Fl, H.,
Heinemeyer, S., et al. Predictions for Supersymmetric Particle Masses
using Indirect Experimental and Cosmological Constraints. (2008).
[arXiv:0808.4128v1]

Buchmueller, O., Cavanaugh, R., Roeck, A. D., Ellis, J. R.,
Heinemeyer, S., Isidori, G., et al. Likelihood Functions for
Supersymmetric Observables in Frequentist Analyses of the CMSSM
and NUHM1. (2009). [arXiv:0907.5568v1]

Heinemeyer, S., Stckinger, D., & Weiglein, G. Electroweak and
supersymmetric two-loop corrections to (g − 2)µ. (2004).
[hep-ph/0405255v1]

Cowan, G. Statistical Data Analysis. (1998). Oxford University Press.

James, F. Statistical Methods in Experimental Physics, 2nd Ed.
(2006). World Scientific.

Ryan D. Reece (Penn) Likelihood Functions for SUSY ryan.reece@cern.ch 24 / 24


