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SUSY

@ The Minimal Supersymmetric Standard Model (MSSM) is the
supersymmetric extension to the SM with the simplest Higgs sector,
but otherwise general.

@ The MSSM has two complex Higgs doublets: H,, and H; that couple
to up and down type fermions respectively.

o After electroweak symmetry breaking, the Higgs fields have two
vacuum expectation values: vy, vq, tan 8 = vy, /vg.

@ Symmetry breaking still introduces 3 massless Goldstone bosons.
@ The other 5 degrees of freedom give 5 Higgs bosons: h, H, A, H*.

@ 137 additional parameters
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CMSSM and NUMH1

CMMSM
@ The Constrained MSSM (CMSSM) is a subset of possible MSSMs in
which “some universality relations are imposed on the soft
SUSY-breaking parameters,” limiting the number of parameters to a
few. [arXiv:0808.4128v1]

@ mg and my, are parameters that set the scale for the masses of the
supersymmetric scalars and gauginos.

NUMH1

@ Is a generalization of the CMSSM, dropping a universality relation in
the Higgs sector.
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x?2 Fits and Confidence Contours
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[arXiv:0808.4128v1]

We'll discuss how one goes from the statistic on the left to the plot on the
right.
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Primer on the Maximum Likelihood Method

Consider a Gaussian distributed measurement:

filzlp, o) = \/2;7 exp (—(x—u)2>

If we repeat the measurement, the joint PDF is just a product:

$|:uv Hfl xl’“)

The likelihood function is the same function as the PDF, only thought of
as a function of the parameters, given the data. The experiment is over.

L(H’U’f) = f(f“j’v U)

The likelihood principle states that the best estimate of the true
parameters are the values which maximize the likelihood.
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It is often more convenient to consider the log likelihood, which has the
same maximum.

mL=mn][A=) _InA
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Which agrees with our intuition that the best estimate of the mean of a
Gaussian is the sample mean.
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Note that in the case of a Gaussian PDF, maximizing likelihood is
equivalent to minimizing .

InL = Z (—;ln(27m2) - W)

is maximized when

is minimized.

This was a simple example of what statisticians call point estimation.

Now we would like to quantify our error on this estimate.



One would think that if the likelihood function varies rather slowly near
the peak, then there is a wide range of values of the parameters that are
consistent with the data, and thus the estimate should have a large error.

To see the behavior of the likelihood function near the peak, consider the
Taylor expansion of a general In L. of some parameter 6, near its maximum
likelihood estimate 6:

0
- Oln - 1 9%InL o
——

—1/s2

Dropping the remaining terms would imply that

252

L(0) = L(0) exp <M>

Note that the In L(#) is parabolic.
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So if this were a good approximation, we would expect that the variance of
6 would be given by
-1
)

It turns out that there is more truth to this than you would think, given by
an important theorem in statistics, the Cramér-Rao Inequality:

A A &?InL
VIOl > (1+ — E|l— ——
> (1+55) /8 |- |
An estimator’s efficiency is defined to measure to what extent this
inequality is equivalent:
J

9 0*InL
== ——
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It can be shown that in the large sample limit:

Maximum likelihood estimators are unbiased and 100% efficient.

Therefore, in principle, one can calculate the variance of an ML estimator

with ) B
o= (e[

062
Calculating the expectation value would involve an analytic integration
over the PDFs of all our possible measurements, or a Monte Carlo
simulation of it. In practice, one usually uses the observed maximum
likelihood estimate as the expectation.
-1
é)

. 9?InL
V[e]__(am

Ryan D. Reece (Penn) Likelihood Functions for SUSY ryan.reece@cern.ch



Let's go back to our simple example of a Gaussian likelihood to test this
method of calculating the ML estimator’s variance.

21n -1
V[ﬂ]=—<8l LA)

O

Which many of you will recognize as the proper error on the sample mean.
If you are unfamiliar with it, we can actually derive it analytically in this
case. —
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1#£j i
MQ
= NZ (ZM + ZEM) -
i#j i

To find E[z?], consider
Vl[z] = 0 = E[2*] - E[2]* = E[+?] - °
= E[2?] = 0 + u?



= V= | e+ D0 ) | -

1#£] 7
1
= 3 ((N? = N)p® + N(o? + p?)) — 1
_a
N

Which verifies the result we got from calculating derivatives of the
. <62 InL

likelihood function. .

In practice, one usually doesn't calculate this analytically, but instead:

@ calculates the derivatives numerically, or

@ uses the Aln L or Ax? method, described now
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Back to our Taylor expansion of In L:

~ 1 82111[/ N 2
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Let  AlnL(9) =InL(H) — In L(0)

(6 —6)
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A n2
Aln L(0 £ noy) = —

This is the most common definition of the 68% and 95% confidence
intervals:

68%/ 105 AlnL = —%

95%/ 2 050 AlnL = —2



Recall that in the case that the PDF is Gaussian, the In L is just the x?
statistic.

2 2

2’ o?
R N n?
Aln L(0 £ noy) = In L(0 £ noy) — In Liax = -5
L 2 2 n’
= _5 (X (9:|:1’L0'é) - Xmin) = _7

Ax2(0 + noy) = n?

68%/ 1 050 Ax* =1
95%/ 2 050 Ax* =4



What if L(#) is not Gaussian, i.e. In L(€) is not parabolic?

Aln L . K
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Likelihood functions have an invariance property, such that if g(z) is a
monotonic function, then the maximum likelihood estimate of g(6) is g(6).
In principle, one can find a change of variables function g(#), for which the
In L(g(f)) is parabolic as a function of g(#). Therefore, using the
invariance of the likelihood function, one can make inferences about a
parameter of a non-Gaussian likelihood function without actually finding

such a transformation [James p. 234]. .
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Figure 24. The x? functions for My, in the CMSSM (left) and the NUHM1 (right), including the theoretical
uncertainties (red bands). Also shown is the mass range excluded for a SM-like Higgs boson (yellow
shading), and the ranges theoretically inaccessible in the supersymmetric models studied.

Now you know:

68%/ 1 05 Ax* =1,
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Multidimensional case:
Assume 6 is Gaussian distributed.

5 1 1 =
g(010) = @r2[V]I2 exp <_2Q(970)>

Q6.0)= (0~ 6TV (6 -0)
As in the one dimensional case, ( is distributed as a x2, with n degrees of
freedom. The probability that we get a value of @ less than some constant

Qc is

Q. fu(z)
PQ<Q) = i dz fn(x) = Fo(Q.) = ¢

where f,(z) is the PDF of x2, and F,, is its
cumulative distribution.

= Qc — F{l(c) g 2 4 3 8
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A 95% confidence contour doesn’'t mean that the true value of the
parameter is in the contour with 95% probabilty. That would be a
Bayesian probabilty (a probability of belief). It means that if the model is
correct, we have properly estimated our errors, and if we were to repeat
the experiment over and over again, each time creating a new contour,
then the contour would cover the true parameter in 95% of the
experiments (a frequentist probability).
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CMSSM Contours and Exclusion
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Parameter Error Sensitivity
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Figure 5: Generic two-loop diagrams to a,, with a closed chargino/neutralino loop. ¢,
1) denote the scalar particles h, H, A°, H* and G®*; V denotes the vector bosons 7,
Z, W#; { stands for the chargino/neutralino mass eigenstates )ZﬁQ, X3234

ap® —alf*® = (245+9.0) x 10710 : 2.70 [hep-ph/0405255v1]
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